

CALTRANS Adaptation Priorities

This page intentionally left blank.

CONTENTS

1.	INTRO	DUCTION1
	1.1.	Purpose of Report1
	1.2.	Report Organization1
2.	CALTR	ANS' CLIMATE ADAPTATION FRAMEWORK
3.	PRIOR	ITIZATION METHODOLOGY
	3.1.	General Description of the Methodology5
	3.2.	Asset Types and Hazards Studied5
	3.3.	Prioritization Metrics83.3.1. Exposure Metrics113.3.2. Consequence Metrics13
	3.4.	Calculation of Initial Prioritization Scores16
	3.5.	Adjustments to Prioritization20
4.	DISTRI	ICT ADAPTATION PRIORITIES
	4.1.	Bridges21
	4.2.	Large Culverts
	4.3.	Small Culverts
	4.4.	Roadways
5.	NEXT	STEPS
6.	APPEN	NDIX

TABLES

Table 1: Asset-Hazard Combinations Studied	6
Table 2: Metrics Included for Each Asset-Hazard Combination Studied	10
Table 3: Weights by Metric for Each Asset-Hazard Combination Studied	18
Table 4: Priority 1 Bridges	21
Table 5: Priority 1 Large Culverts	25
Table 6: Priority 1 Small Culverts	27
Table 7: Priority 1 Roadways	32
Table 8: Prioritization of Bridges for Detailed Climate Change Adaptation Assessments	39
Table 9: Prioritization of Large Culverts for Detailed Climate Change Adaptation Assessments	47
Table 10: Prioritization of Small Culverts for Detailed Climate Change Adaptation Assessments	48
Table 11: Prioritization of Roadways for Detailed Climate Change Adaptation Assessments	63

ï

FIGURES

Figure 1: Caltrans' Climate Adaptation Framework (FEAR-NAHT Framework)	3
Figure 2: Prioritization of Bridges for Detailed Adaptation Assessments	24
Figure 3: Prioritization of Large Culverts for Detailed Adaptation Assessments	26
Figure 4: Prioritization of Small Culverts for Detailed Adaptation Assessments	31
Figure 5: Prioritization of Roadways for Detailed Adaptation Assessments	36

This page intentionally left blank.

Term and Definitions

- Adaptation: The steps taken to prepare a community or modify a targeted asset prior to a weather or climate-related disruption to minimize or avoid the impacts of that event. An example would be elevating assets in areas likely to experience increased flooding in the future.
- **Exposure:** The presence of infrastructure in places and settings where it could be adversely affected by hazards and threats, for example, a road in a floodplain.¹
- Hazards and Stressors: Stresses on transportation system performance and condition. Whether such impacts occur today (e.g., riverine flooding that closes major highways) or whether they are part of a long- term trend (e.g., sea level rise), mainstreaming resilience efforts into an agency's functions requires an understanding of their nature, scope, and magnitude. The terms are used interchangeably to refer to transportation impacts originating primarily from natural causes (e.g., flooding or wildfire hazards).
- **Resilience:** The characteristic of a system that allows it to absorb, recover from, or more successfully adapt to adverse events.
- **Risk:** "A combination of the likelihood that an asset will experience a particular climate impact and the severity or consequence of that impact."²
- Sensitivity: Per the Federal Highway Administration, "refers to how an asset or system responds to, or is affected by, exposure to a climate change stressor. A highly sensitive asset will experience a large degree of impact if the climate varies even a small amount, where as a less sensitive asset could withstand high levels of climate variation before exhibiting any response."³
- Uncertainty: The degree to which a future condition or system performance cannot be forecast. Both human-caused and natural disruptions, especially for longer-term climate changes, are by their very nature uncertain events (as no one knows for sure exactly when and where and with what intensity they will occur). Sensitivity tests using multiple plausible scenarios of future conditions can help one understand the range of uncertainty and its implications. This approach is used routinely when working with climate projections to help understand the range of possible conditions given different future greenhouse gas emission scenarios.
- Vulnerability: Per the Federal Highway Administration, "the degree to which a system is susceptible to or unable to cope with adverse effects of climate change or extreme weather events."⁴

 ⁴ FHWA. 2014. "FHWA Order 5520. "Transportation System Preparedness and Resilience to Climate Change and Extreme Weather Events." Dec.
 15. Retrieved June 30, 2020 from https://www.fhwa.dot.gov/legsregs/directives/orders/5520.cfm

¹ This definition is adopted from the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

² FHWA. 2017. "Vulnerability Assessment and Adaptation Framework: Third Edition." Retrieved September 25, 2020 from <u>https://www.fhwa.dot.gov/environment/sustainability/resilience/adaptation_framework/climate_adaptation.pdf</u> ³ Ibid.

1. INTRODUCTION

California's climate is changing. Temperatures are warming, sea levels are rising, wet years are becoming wetter, dry years are becoming drier, and wildfires are becoming more intense. Most scientists attribute these changes to the unprecedented amounts of greenhouse gases in the atmosphere. Given that global emissions of these gases continue at record rates, further changes in California's climate are, unfortunately, very likely.

The hazards brought on by climate change pose a serious threat to California's transportation infrastructure. Higher than anticipated sea levels can regularly inundate roadways, extreme floods can severely damage bridges and culverts, rapidly moving wildfires present profound challenges to timely evacuations, and higher than anticipated temperatures can cause expensive pavement damage over a broad area. As Caltrans' assets such as bridges and culverts age, they will be forced to weather increasingly severe conditions that they were not designed to handle, adding to agency expenses and putting the safety and economic vitality of California communities at risk.

Recognizing this, Caltrans has initiated a major agency-wide effort to adapt their infrastructure so that it can withstand future conditions. The effort began by determining which assets are most likely to be adversely impacted by climate change in each Caltrans district. That assessment, described in the Caltrans Climate Change Vulnerability Assessment Report for District 10, identified stretches of the State Highway System within the district that are potentially at risk. This Adaptation Priorities Report picks up where the vulnerability assessment left off and considers the implications of those impacts on Caltrans and the traveling public, so that facilities with the greatest potential risk receive the highest priority for adaptation. District 10 anticipates that planning for, and adapting to, climate change will continue to evolve subsequent to this report's release as more data and experience is gained.

1.1. Purpose of Report

The purpose of this report is to prioritize the order in which assets found to be exposed to climate hazards will undergo detailed asset-level climate assessments. Since there are many potentially exposed assets in the district, detailed assessments will need to be done sequentially according to their priority level. The prioritization considers, amongst other things, the timing of the climate impacts, their severity and extensiveness, the condition of each asset (a measure of the sensitivity of the asset to damage), the number of system users affected, and the level of network redundancy in the area. Prioritization scores are generated for each potentially exposed asset based on these factors and used to rank them.

1.2. Report Organization

The main feature of this report is the prioritized list of potentially exposed assets within District 10. Per above, this information will inform the timing of the detailed adaptation assessments of each asset, which is the next phase of Caltrans' adaptation work. The final prioritized list of assets for District 10 can be found in Chapter 4 of this document. The interim chapters provide important background information on the prioritization process. For example, those interested in learning more about Caltrans' overall adaptation efforts, and how the prioritization fits into that, should refer to Chapter 2. Likewise, those who are interested in learning more about how the prioritization was determined should refer to Chapter 3.

2. CALTRANS' CLIMATE ADAPTATION FRAMEWORK

Enhancing Caltrans' capability to consider adaptation in all its activities requires an agency-wide perspective and a multi-step process to make Caltrans more resilient to future climate changes. The process for doing so will take place over many years and will, undoubtedly, evolve over time as everyone learns more about climate hazards, better data is collected, and experience shows which techniques are most effective. Researchers have just started examining what steps an overarching adaptation framework for a department of transportation should entail. Figure 1 provides a graphical illustration of one such path called the Framework for Enhancing Agency Resiliency to Natural and Anthropogenic Hazards and Threats (FEAR-NAHT).⁵ This framework, developed through the National Cooperative Highway Research program (NCHRP), has been adopted by Caltrans as part of its long-term plan for incorporating adaptation into its activities (hereafter referred to as the Caltrans Climate Adaptation Framework or "Framework").

Steps 1 through 4 of the Framework represent activities that are currently underway at Caltrans Headquarters to effectively manage its new climate adaptation program and develop policies that will help jumpstart adaptation actions throughout the organization. Step 1, *Assess Current Practice*, and Step 4, *Implement Early Wins*, are both addressed within a document called the Caltrans Climate Adaptation Strategy Report. The Adaptation Strategy Report undertook a comprehensive review of all climate adaptation policies and activities currently in place or underway at Caltrans. The report also includes numerous no-regrets adaptation actions ("early wins") that can be taken in the near-term to enhance agency resiliency. Several of these strategies also touch on elements of Step 2, *Organize for Success*, and Step 3, *Develop an External Communications Strategy and Plan*. In addition to this, a comprehensive adaptation communications strategy and plan for climate change is being developed as part of a Caltrans pilot project with the Federal Highway Administration.

Step 5, Understand the Hazards and Threats, is the first step where detailed technical analyses are performed, and in this case, identify assets potentially exposed to various climate stressors. This step has been completed for a subset of the assets and hazards in District and the results are presented in the Caltrans Climate Change Vulnerability Assessment Report for District 10. The exposure information generated in the Vulnerability Assessment Report is used as an input to this study.

COVER OF THE CALTRANS CLIMATE CHANGE VULNERABILITY ASSESSMENT REPORT FOR DISTRICT 10

⁵ This framework and related guidance for state DOTs is being developed as part of NCHRP 20-117, Deploying Transportation Resilience Practices in State DOTs (expected completion in 2020).

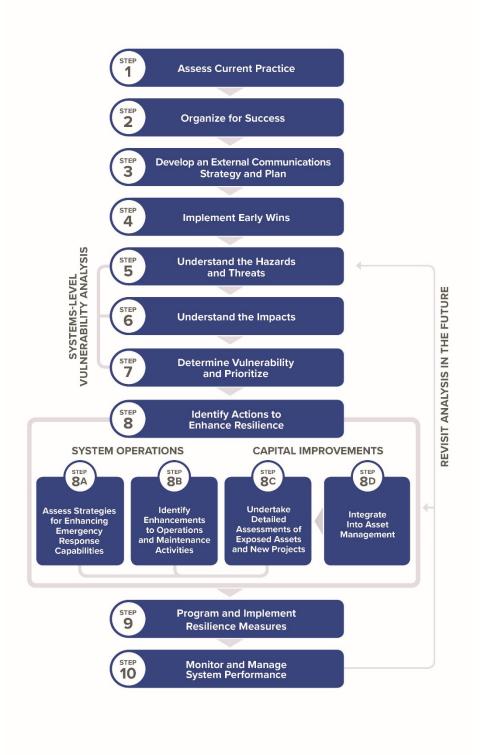


FIGURE 1: CALTRANS' CLIMATE ADAPTATION FRAMEWORK (FEAR-NAHT FRAMEWORK)

The work undertaken for this study, the District 10 Adaptation Priorities Report covers both Steps 6 and 7 in the Framework. Step 6, *Understand the Impacts*, is focused on the implications of the exposure identified in Step 5. This includes understanding the sensitivity of the asset to damage from the climate stressor(s) it is potentially exposed to and understanding the criticality of the asset to the functioning of the transportation network and the communities it serves. Developing an understanding of these considerations is part of the prioritization methodology described in the next chapter.

Step 7, *Determine Vulnerability and Prioritize*, focuses on creating and implementing a prioritization approach that considers both the nature of the exposure identified in Step 5 (its severity, extensiveness, and timing) and the consequence information developed in Step 6. The goal of the prioritization is to identify which assets should undergo detailed adaptation assessments first, because resource constraints will prevent all assets from undergoing detailed study simultaneously.

After Step 7, the Framework divides into two parallel tracks, one focused on operational measures to enhance resiliency and the consideration of adaptation (Steps 8A and 8B) and the other on identifying adaptation-enhancing capital improvement projects (Steps 8C and 8D). Collectively, these represent the next steps that should be undertaken using the information from this report. On the operations track, the results of this assessment should be reviewed for opportunities to enhance emergency response (Step 8A) and operations and maintenance (Step 8C). Caltrans' next step on the capital improvement track should be to undertake detailed assessments of the exposed facilities (Step 8C). The prioritization information generated as part of this assessment should also be integrated into the state's asset management system (Step 8D). All projects recommended through the asset management process should also undergo detailed adaptation assessments (hence the arrow from Step 8D to 8C).

Thus, there will be two parallel pathways for existing assets to get to detailed facility level adaptation assessments. The first is through this prioritization analysis which is driven primarily by the exposure to climate hazards with asset condition as a secondary consideration. The second is through the existing asset management process which is driven primarily by asset condition and will have vulnerability to climate hazards as a secondary consideration.

The detailed adaptation assessments in Step 8C will involve engineering-based analyses to verify asset exposure to pertinent climate hazards (some exposed assets featured in this report will not be exposed after closer inspection). Then, if exposure is verified, Step 8C includes the development and evaluation of adaptive measures to mitigate the risk. The highest priority assets from this study will be evaluated first and lower priority assets will be evaluated later. Once specific adaptation measures have been identified, be they operational measures or capital improvements, these projects can then be programmed (Step 9). Step 10 then focuses on continuous monitoring of system performance to track progress towards enhancing resiliency. Note the feedback loops from Step 10 to Steps 5 and 8. The arrow back to Step 5 indicates that the exposure analysis should be revisited in the future as new climate projections are developed. The arrow back to Step 8 indicates how one can learn from the performance indicators and use this data to modify the actions being undertaken to enhance resilience.

\\S[)

3. PRIORITIZATION METHODOLOGY

3.1. General Description of the Methodology

The methodology used to prioritize assets exposed to climate hazards draws upon both technical analyses and the on-the-ground knowledge of all district staff. The technical analysis component was undertaken first to provide an initial indication of adaptation priorities. These initial priorities were then reviewed with district staff at a workshop and, if necessary, adjusted to reflect local knowledge and recommendations. These adjustments are embedded in the final priorities shown in Chapter 4.

With respect to the technical analysis, there are a few different approaches for prioritizing assets based on their vulnerability to climate hazards. The approach selected for this study is known as the indicators approach. The indicators approach involves collecting data on a variety of variables that are determined to be important factors for prioritization. These are then put on a common scale, weighted, and used to create a score for each asset. The scores collectively account for all the variables of interest and can be ranked to determine priorities.

It is important to note that, since the prioritization process is focused on determining the order in which detailed adaptation assessments are conducted, only assets determined to be potentially exposed to a climate hazard are included in this analysis. Assets that were determined to have no exposure to the hazards studied are not included in this study.

The remainder of this chapter describes the prioritization methodology in detail. Section 3.2 begins by describing the asset types and hazards studied. Next, Section 3.3 discusses the individual prioritization metrics (factors) that were used in the technical analysis. Following this, Section 3.4 describes how those individual factors were brought together into an initial prioritization score for each asset. Lastly, Section 3.5 describes how the initial prioritization was adjusted with input from district staff.

3.2. Asset Types and Hazards Studied

Caltrans is responsible for maintaining dozens of different asset types (bridges, culverts, roadway pavement, buildings, etc.). Each of these asset types is uniquely vulnerable to a different set of climate stressors. Resource constraints only allowed this study to investigate a subset of the asset types owned by Caltrans in District 10 and, for those, only a subset of the climate stressors that could impact them. Additional exposure and prioritization analyses are needed in the future to gain a fuller understanding of Caltrans' adaptation needs.

The subset of asset types and hazards included in this study generally mirror those that were

DONNELL FIRE DAMAGE TO WOODEN BRIDGE OVER HISTORIC MIDDLE FORK STANISLAUS RIVER

included in the District Climate Change Vulnerability Assessment Report. That said, exposure to two additional hazards was included as part of this study: (1) riverine flooding impacts to bridges and

culverts and (2) temperature impacts to pavement binder grade. Table 1 shows all the asset types included in this study for District 10 and marks with an "X" the hazards that were evaluated for each in the exposure analysis.

	Sea Level Rise	Storm Surge	Wildfire	Temperature	Riverine Flooding
Pavement Binder Grade				х	
At-Grade Roadways	Х	Х			
Bridges	Х	Х			х
Large Culverts ⁶	Х	Х			х
Small Culverts ⁷	Х	Х	Х		Х

TABLE 1: ASSET-HAZARD C	COMBINATIONS STUDIED
-------------------------	----------------------

The various asset-hazard combinations include:

• Pavement binder grade exposure to temperature changes: Binder can be thought of as the glue that holds the various aggregate materials in asphalt together. Binder is sensitive to temperature. If temperatures become too hot, the binder can become pliable and deform under the weight of traffic. On the other hand, if temperatures are too cold, the binder can shrink causing cracking of the pavement. There are various types (grades) of binder, each suited to a different temperature regime. This study considered how climate change will influence high and low temperatures and how this, in turn, could affect pavement binder grade performance.

Assumptions were made that (1) all roadways are currently (or could be in the future) asphalt and (2) the binder grade currently in place on each segment⁸ of roadway matches the specifications in the Caltrans Highway Design Manual. From here, the allowable temperature ranges of each binder grade were compared to projected temperatures in 2040, 2070, and 2100. If the temperature parameters exceeded the design tolerance of the assumed binder grade, that segment of roadway was deemed to be potentially exposed.

SR-4 SINK HOLE, MARKLEEVILLE

• Bridge exposure to riverine flooding: Bridges are sensitive to higher flood levels and river flows. With climate change, precipitation is generally expected to become more intense in District 10

⁸ Roadway are segmented at intersections with other roads.

⁶ Culverts 20 feet or greater in width.

⁷ Culverts less than 20 feet in width.

leading to increased flooding on rivers and streams. These higher flows could exceed the design tolerances of bridges. In addition, wildfires are also expected to become more prevalent in District 10 with climate change. After a wildfire burns, the ground can become hard and less capable of absorbing water. As a result, flood flows can increase substantially in the aftermath of a fire, which could further exacerbate the risks to bridges. To better understand the threat posed to bridges in District 10, a flood exposure index was developed and calculated for each bridge that crosses a river or stream. The index considered both the changes in precipitation and wildfire likelihood in the area draining to the bridge in the early, mid, and late century timeframes. The index also considers the capacity of the bridge to handle higher flows using waterway adequacy information from the National Bridge Inventory (NBI). A higher score on the index indicates bridges at relatively greater risk due to a combination of higher projected flows and lower capacity.

- Large culvert exposure to riverine flooding: A distinction is made in the analysis between large and small culverts due to different data being available for each. Large culverts are included in the NBI and are generally 20 feet or greater in width. Small culverts are generally shorter than 20 feet in width and covered through a different inventory/inspection program. Large culverts, like bridges, are sensitive to increased flood flows. Thus, a flood exposure index was calculated for each large culvert in the same manner as was done for bridges.
- Small culvert exposure to riverine flooding: Small culverts (those less than 20 feet in width) are, like bridges and large culverts, also sensitive to higher flood flows. Hence, a flood exposure index like the one for bridges and large culverts was calculated for this asset type. The one difference is that the capacity component of the index for small culverts used the actual dimensions of the culvert, information that was not available for bridges and large culverts. Although the actual dimensions of small culverts were available, due to resource and data constraints, no hydraulic analyses were performed to determine overtopping potential. Instead, the size was simply used as a factor in the riverine flood exposure index.
- Small culvert exposure to wildfire: In addition to the higher post-fire flood flows captured in the flood exposure analysis, culverts can also be sensitive to the direct impacts of fire on the structure. Certain culvert materials (e.g. wood and plastic) can easily burn or be deformed during a fire. Thus, an assessment was made to determine the likelihood of a wildfire directly impacting each small culvert in the early, mid, and late century timeframes. This analysis was only conducted for small culverts because information on culvert construction materials was not available for large culverts.
- At-grade roadway exposure to sea level rise: Sea level rise, caused by the warming of ocean waters and the melting of land-based glaciers, is a prominent hazard brought on by climate change. In low-lying areas like the Sacramento-San Joaquin Delta (the Delta), at-grade roads may become subject to regular inundation as sea levels rise. This can lead to frequent road closures that disrupt travel and accessibility. In some locations with regular inundation, premature degradation roadway infrastructure may also occur.
- Bridge exposure to sea level rise: There are several ways in which sea level rise may adversely affect bridges. For very low bridges, a rise in sea levels may result in water overtopping the deck and impeded travel. It is important to recognize, however, that serious impacts can still occur to

bridges from sea level rise even if water does not overtop the deck. For example, the navigability of Delta channels may become impeded as sea level rise diminishes clearance levels for boats.

- Large and small culvert exposure to sea level rise: Culverts are primarily used to convey streams and stormwater underneath roadways, and some are also used in tidally influenced areas like the Delta. Sea level rise is culverts on the Delta can change the hydraulic performance of the culvert leading to more frequent overtopping of the nearby roadway. For culverts that were not designed for a tidal setting, the frequent unanticipated presence of saltwater can also lead to corrosion and other maintenance issues that may decrease the anticipated lifespan of the asset.
- At-grade roadway exposure to storm surge: Storm surge refers to the elevating of coastal waters during major storm events. When strong winds blow onshore during such events, this can cause the water to pile up and reach levels much greater than during the normal tidal cycle. Sea level rise can cause the water to reach even higher during major storm events and increase the frequency and severity of inundation. Inundation of at-grade roadways from storm surge may require the road to be closed, disrupting travel. Also, the surge and wave action often associated with storm events can cause erosion of the roadway embankment.
- Bridge exposure to storm surge: Storm surge presents many threats to bridges that may not have been fully anticipated if sea level rise was not considered during design. Some low bridges may be overtopped by the surge and others may be affected by uplifting forces from wave action hitting the bottom of the deck. Either situation is likely to lead to the closure of the bridge and introduce the potential for serious structural damage. Even if the water is not high enough to reach the bridge deck, the elevated water levels and associated wave action can cause erosion or flooding around bridge approaches. Furthermore, if the surge approaches or recedes at a high enough velocity, scouring of soils can occur around bridge piers and abutments weakening the structure and potentially compromising the bridge's integrity. This is a particularly acute threat for surge-impacted bridges built over roadways or railroads (as opposed to over water) because scour may not have been considered during their initial designs.
- Large and small culvert exposure to storm surge: Storm surge can overwhelm culverts and flood roadways, impeding travel. If the velocity of the surge is great enough, the hydraulic forcing of excessive water through too small an opening can also damage the culvert. Water overtopping the roadway embankment or levee on top of the culvert may also cause erosion resulting in damages to the roadway and the culvert itself.

3.3. Prioritization Metrics

Metrics are the individual variables used to calculate a prioritization score for each asset. These can be thought of as the individual factors that, collectively, help determine the asset's priority for adaptation. Each of the asset-hazard combinations described in the previous section has its own unique set of factors that are used in the prioritization. The metrics were selected based on their relevancy to each asset-hazard combination and data availability. For example, the condition rating of a culvert is a very relevant metric for prioritizing culverts exposed to riverine flooding, however, it is not at all relevant to

\\S[]

prioritizing bridges exposed to the same hazard. Table 2 provides an overview of all the metrics included in this study and denotes with an "X" their application to the various asset-hazard combinations studied.

TABLE 2: METRICS INCLUDED FOR EACH ASSET-HAZARD COMBINATION STUDIED

	Sea Level Rise				Storm Surge				Wildfire	Tempera- ture	Riverine Flooding		
Metrics	At-Grade Roadways	Bridges	Large Culverts	Small Culverts	At-Grade Roadways	Bridges	Large Culverts	Small Culverts	Small Culverts	Pavement Binder Grade	Bridges	Large Culverts	Small Culverts
Exposure													
Past natural hazard impacts	Х	Х	Х	Х	Х	Х	х	х	х		Х	х	Х
Lowest impactful sea level rise (SLR) increment	Х	Х	Х	Х									
Percent of road segment exposed to 6.6 ft. of SLR	Х												
Lowest impactful SLR increment with 100-year storm surge					Х	Х	х	х					
Percent of road segment exposed to a 100-year storm with 4.6 ft. of SLR					Х								
Initial timeframe for elevated level of concern for wildfire									Х				
Highest projected wildfire level of concern									Х				
Initial timeframe when asphalt binder grade needs to change										Х			
Maximum riverine flooding exposure score for the 2010-2039 timeframe											Х	х	Х
Maximum riverine flooding exposure score											Х	Х	х
Consequences													
Bridge substructure condition rating						Х					Х		
Channel and channel protection condition rating											Х	Х	
Culvert condition rating							Х	Х				Х	х
Culvert material				х					Х				
Scour rating						Х					Х		
Average annual daily traffic (AADT)	Х	х	х	х	Х	Х	Х	Х	х	Х	Х	Х	х
Average annual daily truck traffic (AADTT)		х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Incremental travel distance to detour around the asset									Х		Х	Х	Х
Incremental travel distance to detour around the asset for the lowest impactful SLR increment	Х	х	х	х	Х	Х	х	х					
Incremental travel distance to detour around the asset under the maximum increment of SLR (6.6 feet of SLR alone and 4.6 feet of SLR with a 100-year storm. ⁹	х	x	x	х	х	х	x	x					

⁹ Both sea level rise and storm surge datasets were applied when calculating detour routes. Data applied came from two different models which use different methodologies and assumptions. As such, the model results did not match up across the same flood extents. In the detour analysis, if a road was exposed to sea level rise but not surge due to differing model extents, then the detour would assume the roadway was exposed to sea level rise AND surge.

10

The metrics included in this study fall into two categories: exposure metrics and consequence metrics. Exposure metrics capture the extensiveness, severity, and timing of a hazard's projected impact on an asset. Assets that have more extensive, more severe, and sooner exposure are given a higher priority. Consequence metrics provide an indication of how sensitive an exposed asset is to damage using information on the asset's condition. Consequence metrics also indicate how sensitive the overall transportation network may be to the loss of that asset should it be taken out of service by a hazard. The poorer the initial condition of the potentially exposed asset and the more critical it is to the functioning of the transportation network, the higher the priority given. The specific metrics that are included within each of these categories are described in the sections that follow.

3.3.1. Exposure Metrics

The following metrics were used to assess asset exposure in District 10:

Past natural hazard impacts: Assets that have experienced sea level rise, weather, or fire-related impacts in the past are likely to experience more issues in the future as climate changes and should be prioritized. To obtain information on past impacts, District 10 maintenance staff were surveyed and asked to identify any at-grade roadways, bridges, large culverts, or small culverts that had experienced sea level rise, or storm surge, issues in the past. Staff was also asked to document past riverine flooding impacts for all these asset types except at-grade roadways. Care was taken to

DETWILER FIRE DAMAGE

ensure that these impacts occurred on assets that had not been replaced with a more resilient design after the event occurred. In addition, staff was also asked if any small culverts were damaged directly by fire and replaced with culverts of the same material. Any asset that was identified as previously impacted by either flooding or fire was flagged and that asset was given a higher priority for adaptation.

• Lowest impactful sea level rise increment: Assets that are likely to be impacted by sea level rise sooner should receive higher priority for detailed facility level assessments. To consider this in the asset scoring, a metric was developed that captured the lowest (first) increment of sea level rise¹⁰ to potentially impact each at-grade roadway, bridge¹¹, large culvert, and small culvert.

¹¹ The lowest impactful sea level rise scenario for bridges was determined by whichever increment of sea level rise first causes inundation under the bridge. For bridges already over Delta channels, potential impacts were assumed to occur at the lowest available increment of sea level rise. No analyses were performed to compare the elevations of the bottoms of the bridge decks to the underlying water elevations. The analysis was set up this way in recognition of the impacts possible at bridges from sea level rise before water touches the deck (i.e., enhanced corrosion and structural stability, erosion, and navigability concerns).

¹⁰ Sea level rise areas hydrologically connected to the sea and hydrologically disconnected low-lying areas potentially vulnerable to sea level rise inundation were both used for this assessment.

This metric made use of the Climate Central sea level rise data used in the District 10 Climate Change Vulnerability Assessment.¹² This data is available across the Delta for the following sea level rise heights: 0.0, 0.8, 1.6, 2.5, 3.3, 4.1, 4.9, 5.7, and 6.6 feet. The lower the sea level rise increment that first impacts the asset, the higher priority it received for this metric.

- Percent of road segment exposed to 6.6 ft. of sea level rise: For at-grade roadway segments¹³, not only is the timing of sea level rise impacts an important factor, but also the extensiveness of the impacts. All else being equal, a segment of road that is impacted over a large proportion of its length should receive higher priority than one impacted over only a small area. The 6.6 feet sea level rise increment from Climate Central was used for this metric in order to provide an indicator of more severe, potential impacts at the end of the century under a pessimistic greenhouse gas emissions scenario.
- Lowest impactful sea level rise increment with 100-year storm surge: As with sea level rise, assets that are likely to be impacted by storm surge sooner should receive higher priority for detailed facility level assessments. To factor this into the analysis, this metric captures the lowest (first) sea level rise increment at which the 100-year storm surge could potentially impact each at-grade roadway, bridge¹⁴, large culvert, and small culvert. The CalFloD-3D model was used for this exercise and in the District 10 Climate Change Vulnerability Assessment storm surge assessment.¹⁵ CalFloD-3D modeled a more limited set of future sea level rise increments than the Climate Central model (0.0, 1.6, 3.3, and 4.6 feet) with a 100-year storm event.
- Percent of road segment exposed to a 100-year storm surge with 4.6 feet of sea level rise: This
 metric measures the proportion of each at-grade roadway segment exposed to a 100-year storm
 surge. The highest CalFloD-3D model sea level rise and storm surge increment of 4.6 feet was
 applied. The highest model sea level rise increment is representative of 2080 projections under
 a lower probability scenario and high future emissions.¹⁶ All else being equal, the greater the
 proportion of roadway length exposed to storm surge, the higher the priority of that segment.
- Initial timeframe for elevated level of concern from wildfire: Assets that are more likely to be impacted by wildfire sooner should be prioritized first. Using the future wildfire projections developed for the District 10 Climate Change Vulnerability Assessment Report, the initial timeframe (2010-2039, 2040-2069, 2070-2099, or Beyond 2099) for heightened wildfire risk was determined for each small culvert.¹⁷ The most recent timeframe across the range of available

¹⁷ See the District 10 Climate Change Vulnerability Assessment Summary and/or Technical Reports for more information: <u>https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments</u>

¹² See the District 10 Climate Change Vulnerability Assessment Summary and/or Technical Reports for more information: <u>https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments</u>

¹³ At-grade roadways are segmented at intersections with other roads thereby matching the segmentation used for the pavement binder grade analysis.

¹⁴ As with sea level rise, the lowest impactful sea level rise scenario for bridges was determined by whichever increment of sea level rise first causes storm surge inundation under the bridge. For bridges already over Delta waters, potential impacts were assumed to occur at the lowest available increment of sea level rise. No analyses were performed to compare the elevations of the bottoms of the bridge decks to the underlying water elevations. The analysis was set up this way in recognition of the impacts possible at bridges from storm surge before water touches the deck (i.e., structural stability, erosion, and scour concerns).

¹⁵ See the District 10 Climate Change Vulnerability Assessment Summary and/or Technical Reports for more information: <u>https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments</u>

¹⁶ See the Ocean Protection Council California Sea Level Rise Guidance (2018 Update) for more information on sea level rise projections in San Francisco Bay (these are the closest projections to the Delta): <u>https://opc.ca.gov/webmaster/ftp/pdf/agenda_items/20180314/Item3_Exhibit-</u> <u>A_OPC_SLR_Guidance-rd3.pdf</u>

climate scenarios was chosen. Assets that were impacted sooner were given a higher priority for adaptation.

- Highest projected wildfire level of concern: Assets that are exposed to a greater wildfire risk should be prioritized. The wildfire modeling conducted for the District 10 Climate Change Vulnerability Assessment Report classified fire risk into five levels of concern (very low, low, moderate, high, and very high) at various future time periods.¹⁸ Using this data, the highest level of concern was determined for each small culvert between now and 2100 and across all climate scenarios. Assets with higher levels of concern were given a higher priority for adaptation.
- Initial timeframe when asphalt binder grade needs to change: Roadway segments that are more likely to need binder grade changes sooner should be prioritized. Using the assumptions and data from the pavement binder grade exposure analysis described above, the initial timeframe (prior to 2010, 2010-2039, 2040-2069, or 2070-2099) for binder grade change was determined. Roadway segments that were found to need binder grade changes sooner were given a higher priority for detailed adaptation assessments.
- Maximum riverine flooding exposure score for the 2010-2039 timeframe: Assets that have relatively higher exposure to riverine flooding in the near-term should be prioritized. Using the riverine flood exposure index values calculated using the process described above, the highest score for the near-term (2010-2039) period was determined for each bridge, large culvert, and small culvert considering all climate scenarios and the range of outputs from all climate and wildfire models. Assets with the highest overall riverine flooding scores in this initial period received a higher priority for adaptation.
- Maximum riverine flooding exposure score: In addition to understanding the most pressing near-term needs for dealing with riverine flooding, assets that have relatively higher exposure to riverine flooding at any point over their lifespans should also be prioritized. To calculate this metric, the highest riverine flooding exposure score was determined for each asset considering all time periods (from now through 2100), all climate scenarios, and all climate and wildfire models. Assets with the highest overall riverine flooding scores received a higher priority for adaptation.

3.3.2. Consequence Metrics

The following metrics were used to understand the consequences of each asset's exposure, considering both asset sensitivity to damage and network sensitivity to loss of the asset:

• Bridge substructure condition rating: Poor bridge substructure condition can contribute to failure during riverine flooding and storm surge events. The NBI assigns a substructure condition rating to each bridge. Values range from nine to two with lower values indicating poorer condition. Bridges with poor substructure condition ratings were given higher priority for adaptation assessments.


¹⁸ See the District 10 Climate Change Vulnerability Assessment Summary and/or Technical Reports for more information: <u>https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments</u>

- Channel and channel protection condition rating: Poor channel conditions or inadequate channel protection measures can contribute to failure during riverine flooding events. The NBI assigns a channel and channel protection condition rating to each bridge and large culvert. Values range from nine to two with lower values indicating poorer condition. Bridges and large culverts with poor channel or channel protection ratings were given higher priority for adaptation assessments.
- **Culvert condition rating:** Poor culvert condition can contribute to failure during storm surge and riverine flooding events. The NBI assigns a culvert condition rating to each large culvert. Values range from nine to two with lower values indicating poorer condition. Caltrans has developed their own culvert condition rating system for small culverts. Possible ratings in the Caltrans system include good, fair, critical, and poor. Large and small culverts with poorer condition ratings in either system were prioritized.
- Culvert material: Culvert material determines the sensitivity of culverts to direct damage from wildfires and material degradation due to sea level rise. Caltrans includes material data in its databases on small culverts (no equivalent information exists for large culverts). Possible culvert materials include HDPE (high density polyethylene [plastic]), PVC (polyvinyl chloride [plastic]), corrugated steel pipe, composite, wood, masonry, and concrete. HDPE, PVC, corrugated steel pipe, composite, and wood culverts are all more sensitive to wildfire and any small culverts made from these materials that are exposed to an elevated risk from wildfire were prioritized for adaptation. Likewise, corrugated steel pipe and concrete are more sensitive to regular saltwater inundation and any small culverts made from these materials that are exposed to sea level rise were assigned a higher priority.
- Scour rating: Scour is a condition where water has eroded the soil around bridge piers and abutments. Excessive scour of bridge foundations makes bridges more prone to failure, especially during storm surge and riverine flooding events. The NBI assigns a scour condition rating to each bridge. Values range from eight to two with lower values indicating greater scour concern. Bridges with lower scour values (higher scour concern) were given higher priority for adaptation assessments.

EMERGENCY STORM DRAIN CLEANING

- Average annual daily traffic (AADT): AADT is a measure of the average traffic volume on a roadway. The consequences of weather and sea level rise-related failures/disruptions/maintenance are greater for assets that convey a higher volume of traffic. Disruptions on higher volume roads affect a greater proportion of the traveling public and there is a greater chance of congestion ripple effects throughout the network because alternate routes are less likely to be able to absorb the diverted traffic. AADT data was obtained from Caltrans databases and assigned to all the asset types included in this study. Exposed assets with higher AADT values were given greater priority for adaptation.
- Average annual daily truck traffic (AADTT): AADTT is a measure of the average truck volumes on a roadway. Efficient goods movement is important for maintaining economic resiliency and for providing relief supplies after a disaster. The consequences of weather and sea level riserelated failures/disruptions/maintenance are greater for assets that are a critical link in supply chains. AADTT data was obtained from Caltrans databases and assigned to all the asset types included in this study. Potentially exposed assets with higher AADTT values were given greater priority for adaptation.
- Incremental travel distance to detour around the asset due to wildfire or riverine flooding closures: This metric measures the degree of network redundancy around each asset which may be out of service due to a wildfire or riverine flood impacts. A detour routing tool was developed for this project that can find the shortest path detour around a bridge, large culvert, or small culvert and calculate the additional travel distance that would be required to take that detour. The tool was run for each of the assets studied. Assets that had very long detour routes were given greater priority for adaptation.
- Incremental travel distance to detour around the asset for the lowest impactful SLR increment: A more complex version of the detour routing tool was used to determine the

shortest detour for the lowest impactful sea level rise increment that would result in sea level rise and storm surge affecting each asset. This provides an indication of the initial network redundancy issues that may be created by impacts in the Delta. For these hazards, the detour tool considered the inundation/erosion throughout the roadway network for each increment of sea level rise evaluated. This ensured that detours were not routed onto roads that would also be inundated or eroded under the same amount of sea level rise. In other words, when run for assets exposed to sea level rise, the detour routing algorithm ensured that no flooded roadways under that sea level rise increment could be considered a detour route. When run for assets exposed to storm surge, the detour routing algorithm ensured that no road affected by either sea level rise or storm surge at the same increment of sea level rise could be considered a detour route. As with the riverine flooding detours, assets that had very long detour routes were given greater priority for adaptation.

• Incremental travel distance to detour around the asset under the maximum extent of SLR (6.6 feet of SLR and 4.6 feet of SLR with a 100-year storm): This metric captures the level of network redundancy around exposed at-grade roadways, bridges, large culverts, and small culverts under 6.6 feet of SLR and 4.6 feet of SLR and a 100-year storm surge. As in the sea level rise and surge metrics, the Climate Central model was used for sea level rise on its own and the CalFloD-3D model was used to identify potential roadway closures under sea level rise and surge. The detour values for this metric were calculated the same way as was done for the lowest impactful sea level rise increment detour metrics described above. Likewise, assets that had very long detour routes under these sea level rise and surge increment were given greater priority for adaptation.

3.4. Calculation of Initial Prioritization Scores

Once all the metrics had been gathered/developed, the next step was to combine them and calculate an initial prioritization score for each asset. Calculating prioritization scores is a multi-step process that was conducted using Microsoft Excel. The primary steps are as follows:

1. Scale the raw metrics: Several of the metrics described in the previous section have different units of measurement. For example, the AADT metric is measured in vehicles per day whereas the incremental travel time to detour around the asset is measured in minutes. There is a need to put each metric on a common scale to be able to integrate them into one scoring system. For this study, it was decided to use a scale ranging from zero to 100 with zero indicating a value for a metric that would result in the lowest possible priority level and 100 indicating a value for a metric that would result in the highest possible priority level. The district-wide minimum and maximum values for each metric were used to set that metric's zero and 100 values. The past weather/fire impacts metric (which had binary values) was assigned a zero if the condition was false (i.e., there were no previous weather/fire impacts reported) and 100 if the condition was true. Categorized or incremental values, like the various condition rating metrics or the sea level rise increments, were generally parsed out evenly between zero and 100 (e.g., if there were seven condition rating values, the minimum and maximum values were coded as zero and 100, respectively, with the five remaining categories assigned values at intervals of 20). The remaining metrics with continuous values were allowed to fall at their proportional location within the re-scaled zero to 100 range.

2. Apply weights: Some metrics have been determined by Caltrans to be more important than others for determining priorities. Therefore, the relative importance of each metric was adjusted by multiplying the scaled score by a weighting factor. Metrics deemed more important to prioritization were multiplied by a larger weight. For consistency, Caltrans Headquarters staff harmonized the weights to be used in all districts based on national best practices and input from the districts. Table 3 shows the weighting schema applied to the asset-hazard combinations in District 10. The weights are percentage based and add to 100% for all the metrics within a given asset-hazard combination (column).

In general, higher weights were assigned to the future exposure metrics (including those considering both the hazard timing and severity) as they are the primary drivers of adaptation need. This helps ensure adaptations are considered proactively before the hazards affect the assets. It also focuses the first detailed assessments on those assets that are projected most severely affected by climate change.

	Percentage Weights by Asset Class												
Metric	Sea Level Rise			Storm Surge			Wildfire Tempera- ture		Riverine Flooding				
	At-Grade Roadways	Bridges	Large Culverts	Small Culverts	At-Grade Roadways	Bridges	Large Culverts	Small Culverts	Small Culverts	Pavement Binder Grade	Bridges	Large Culverts	Small Culverts
Exposure													
Past natural hazard impacts	20%	20%	20%	20%	20%	20%	20%	20%	20%	-	20%	20%	20%
Lowest impactful sea level rise (SLR) increment	22.5%	45%	45%	40%	-	-	-	-	-	-	-	-	-
Percent of road segment exposed to 6.6 ft. of SLR	22.5%	-	-	-	-	-	-	-	-	-	-	-	-
Lowest impactful SLR increment with 100-year storm surge	-	-	-	-	22.5%	45%	45%	45%	-	-	-	-	-
Percent of road segment exposed to a 100-year storm with 4.6 ft. of SLR	-	-	-	-	22.5%	-	-	-	-	-	-	-	-
Initial timeframe for elevated level of concern for wildfire	-	-	-	-	-	-	-	-	17.5%	-	-	-	-
Highest projected wildfire level of concern	-	-	-	-	-	-	-	-	17.5%	-	-	-	-
Initial timeframe when asphalt binder grade needs to change	-	-	-	-	-	-	-	-	-	60%	-	-	-
Maximum riverine flooding exposure score for the 2010-2039 timeframe	-	-	-	-	-	-	-	-	-	-	22.5%	22.5%	22.5%
Maximum riverine flooding exposure score	-	-	-	-	-	-	-	-	-	-	22.5%	22.5%	22.5%
Consequences													
Bridge substructure condition rating	-	-	-	-	-	1.5%	-	-	-	-	1%	-	-
Channel and channel protection condition rating	-	-	-	-	-	-	-	-	-	-	2.5%	2.5%	-
Culvert condition rating	-	-	-	-	-	-	5%	5%	-	-	-	2.5%	5%
Culvert material	-	-	-	15%	-	-	-	-	20%	-	-	-	-
Scour rating	-	-	-	-	-	8.5%	-	-	-	-	6.5%	-	-
Average annual daily traffic (AADT)	10%	10%	10%	7%	10%	7%	7%	7%	7%	13%	7%	10%	10%
Average annual daily truck traffic	5%	5%	5%	3%	5%	3%	3%	3%	3%	27%	3%	5%	5%
Incremental travel distance to detour around the asset	-	-	-	-	-	-	-	-	15%	-	15%	15%	15%
Incremental travel distance to detour around the asset for the lowest impactful SLR increment	10%	10%	10%	7.5%	10%	7.5%	10%	10%	-	-	-	-	-
Incremental travel distance to detour around the asset under the maximum increment of SLR (6.6 feet of SLR alone and 4.6 feet of SLR with a 100-year storm. ¹⁹	10%	10%	10%	7.5%	10%	7.5%	10%	10%	-	-	-	-	-
TOTAL	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

¹⁹ Both sea level rise and storm surge datasets were applied when calculating detour routes. Data applied came from two different models which use different methodologies and assumptions. As such, the model results did not match up across the same flood extents. In the detour analysis, if a road was exposed to sea level rise but not surge due to differing model extents, then the detour would assume the roadway was exposed to sea level rise AND surge. See the District 10 Climate Change Vulnerability Assessment Summary and/or Technical Reports for more information about the sea level rise and surge models applied: https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments

Amongst the consequence metrics, more weight is given to the AADT and detour route variables relative to the condition rating related variables (bridge substructure condition rating, channel and channel protection condition rating, culvert condition rating, and scour rating). The logic for this is as follows. First, except for the scour rating, the connection between asset condition and asset failure during a hazard event is not always straightforward. Where there is less confidence in a metric, it is weighted less.²⁰ Second, other prioritization systems used by Caltrans, namely the asset management system, focus on condition to prioritize assets. Thus, poor condition assets will already be prioritized through that program and, per Caltrans' Climate Adaptation Framework shown in Figure 1 will also undergo detailed adaptation assessments before upgrades are made. There is little value in duplicating that prioritization system for this report; instead this effort puts more priority on assets based on their exposure to climate change-related hazards. Lastly, the traffic volume and detour length variables are the primary measures by which impacts to users of the system are captured and, given the importance of mobility to the functioning of the state, were weighted higher.²¹An exception to some of the logic noted above can be found with small culvert exposure to wildfire and sea level rise. For these assets, nearly as much weight is given to the culvert material variable as to the AADT and detour route variables collectively. This is because the very nature of the threat to small culverts from wildfire and sea level rise is highly related to the material of the culvert. For example, if the culvert is plastic or wood, it is much more susceptible to fire damage than, say, a concrete culvert. Since they are less likely to be adversely affected by fire in the first place, one would not want to give high priority to concrete culverts for wildfire just because they convey a high AADT or have long detour routes. That is why more weight is placed on the material metric for this particular asset-hazard combination.

- 3. Calculate prioritization scores for each hazard: After the weights were applied, the next step was to calculate prioritization scores for each individual hazard. This was done by first summing the products of the weights and scaled values for all the metrics relevant to the particular asset-hazard combination being studied (i.e., summing up the products for each column in Table 3). Since there are different numbers of metrics used to calculate the score for each asset-hazard combination, these values were then re-scaled to range from zero to 100 with zero representing the lowest priority asset and 100 the highest priority asset. These interim scores provide useful information for understanding asset vulnerability to each specific hazard.
- 4. **Calculate cross-hazard prioritization scores:** While the prioritization scores for each hazard provide useful information, they do not provide the full picture on the threats posed to each asset. It was decided that the final scores used as the basis for prioritization need to look holistically across all the hazards analyzed. This cross-hazard perspective provides a better view of the collective threats faced by each asset and a better basis for prioritization. To calculate the cross-hazard scores, the scores for each hazard analyzed for the asset were summed. These were then re-scaled yet again to a zero to 100 scale since different asset types have different

²¹ Within the traffic volume related metrics, note that slightly more weight is given to AADT as opposed to truck AADT given that most of the traffic on a roadway is non-truck. Thus, it was reasoned that the total volume should factor in somewhat more heavily than the truck volume. One exception to this was for temperature impacts to pavement. This asset-hazard combination is unique in that the traffic volume information is not just an indicator of how many users may be affected by necessary pavement repairs but also an indicator of how much damage may occur to the pavement should temperatures exceed binder grade design thresholds. Given that, for this asset-hazard combination, more weight is given to truck volumes since trucks do disproportionately more damage to temperature-weakened pavement.

²⁰ Note that the scour rating metric is weighted somewhat higher than the other condition related assets because of its more direct connection to asset failure.

numbers of hazards. As before, the higher the score, the higher the adaptation priority of that asset. These cross-hazard scores represent the final scores calculated for each asset during the technical assessment portion of the methodology.

5. Assign priority levels: The final step in the technical assessment was to group together assets into different priority levels based on their cross-hazard scores. This was done to make the outputs more oriented to future actions, decrease the tendency to read too much into minor differences in the cross-hazard scores, and better facilitate dialogue at the workshop with District 10 staff. Five priority levels were developed (Priority 1, 2, 3, 4, and 5) and assets were assigned to those groups on a district-wide basis. An equal number of assets were assigned to each priority level to help facilitate administration of the facility-level adaptation assessments that will follow this study.

3.5. Adjustments to Prioritization

A workshop was held with District 10 to review the scoring methodology and go over the preliminary results. District 10 staff could adjust asset priorities based upon their own judgement and on-the-ground knowledge. District staff, who possess an intimate knowledge of their assets, may have information about the assets or their environmental context that is not easily captured in an indicator-based scoring methodology. After the workshop and reviewing the scoring and prioritization, District 10 staff accepted the prioritization as-is and did not adjust any of the assets' rankings.

4. DISTRICT ADAPTATION PRIORITIES

This chapter presents Caltrans' priorities for undertaking detailed adaptation assessments of assets exposed to climate change in District 10. The material presented in this chapter reflects the results of the technical analysis and the coordination with District 10 staff described in the previous chapter. The information is broken out by asset type with priorities for bridges discussed in the first section, followed by those for large culverts, small culverts, and roadways.

4.1. Bridges

A total of 248 bridges were assessed for vulnerability to sea level rise, storm surge, and enhanced riverine flooding associated with climate change. All these bridges should eventually undergo detailed adaptation assessments. However, due to resource limitations, this will not be possible to do all at once. Instead, the bridges will be analyzed over time according to the priorities presented here.

Figure 2 provides a map of all the bridges assessed for exposure to sea level rise, surge, and riverine flooding in the district. The color of the points corresponds to the priority assigned to each bridge; darker red colors indicate higher priority assets. The map shows that high priority bridges are scattered throughout the district. That said, there are a few clusters of areas that have several high priority bridges. The top 17 Priority 1 bridges with the highest cross-hazard prioritization scores are in San Joaquin County in the Delta, where they are exposed to both near-term sea level rise and storm surge and high future flows on the San Joaquin River. Other notable clusters of high priority bridges are located along State Route 140 in Mariposa County, where there is heightened risk for riverine flooding.

Table 4 presents a summary of all the Priority 1 bridges in District 10 sorted by their cross-hazard prioritization scores. A complete listing of all bridges ranked by their prioritization scores appears in Table 8 in the appendix.

Priority	Bridge Number	County 22	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	29 0252L	SJ	INTERSTATE 5 SB	SAN JOAQUIN RIVER 04	R14.46	100.00
1	29 0252R	SJ	I-5 NB & SR 120 EB	SAN JOAQUIN RIVER 05	R14.46	94.84
1	29 0221L	SJ	INTERSTATE 5 SB	FRENCH CAMP SLOUGH	R23.25	83.80
1	29 0045	SJ	STATE ROUTE 4	OLD RIVER	0.01	81.72
1	29 0043	SJ	STATE ROUTE 12	MOKELUMNE RIVER	0.01	80.74
1	29 0101	SJ	STATE ROUTE 12	LITTLE POTATO SLOUGH	R4.44	80.44
1	29 0177L	SJ	INTERSTATE 5 SB	BEAR CREEK	34.26	77.07
1	29 0177R	SJ	INTERSTATE 5 NB	BEAR CREEK	34.25	77.04
1	29 0049	SJ	STATE ROUTE 4	MIDDLE RIVER	4.42	76.83
1	29 0197L	SJ	INTERSTATE 5	MOKELUMNE RIVER	49.78	73.62
1	29 0197R	SJ	INTERSTATE 5	MOKELUMNE RIVER	49.78	72.68
1	29 0221R	SJ	INTERSTATE 5 NB	FRENCH CAMP SLOUGH	R23.25	67.26

TABLE 4: PRIORITY 1 BRIDGES

²² ALP = Alpine; AMA = Amador; CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus; TUO = Tuolumne

Priority	Bridge Number	County 22	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	29 0223L	SJ	INTERSTATE 5 SB	WALKER SLOUGH	R23.93	64.46
1	29 0223R	SJ	INTERSTATE 5 NB	WALKER SLOUGH	R23.93	57.36
1	29 0050	SJ	SR 4	SAN JOAQUIN RIVER	14.15	48.65
1	29 0240L	SJ	SR 4 WB	SPBR & GARFIELD AVE	R15.67	44.20
1	29 0240R	SJ	SR 4 EB	SPBR & GARFIELD AVE	R15.67	44.20
1	38 0039	STA	STATE ROUTE 4	DUCK CREEK	0.88	42.54
1	40 0007	MPA	STATE ROUTE 140	SWEETWATER CREEK	37.83	42.32
1	29 0176L	SJ	ROUTE 5	WEBER,PERSHING,FRE MONT	26.47	42.17
1	29 0176R	SJ	ROUTE 5	WEBER,PERSHING,FRE MONT	26.47	40.09
1	31 0009	ALP	STATE ROUTE 4	NORTH FORK MOKELUMNE RIV	12.94	38.74
1	29 0173L	SJ	INTERSTATE 5 SB	SHIMIZU DR & SMITH CANAL	28.26	36.06
1	30 0036	CAL	STATE ROUTE 4	W BRANCH CHEROKEE CREEK	16.15	34.51
1	40 0004	MPA	STATE ROUTE 140	BEAR CREEK	R31.29	34.34
1	29 0173R	SJ	INTERSTATE 5 NB	SHIMIZU DR & SMITH CANAL	28.26	33.40
1	38 0040	STA	STATE ROUTE 4	ROCK CREEK	R1.68	32.08
1	29 0042	SJ	STATE ROUTE 26	DUCK CREEK	16.87	31.01
1	32 0012	TUO	STATE ROUTE 108	EAGLE CREEK	53.03	30.52
1	30 0007	CAL	STATE ROUTE 12	N. FORK CALAVERAS RIVER	17.25	29.65
1	39 0199	MER	STATE ROUTE 165	CALIFORNIA AQUEDUCT	1.08	28.65
1	40 0006	MPA	STATE ROUTE 140	SLATE GULCH	37.09	28.52
1	39 0061	MER	STATE ROUTE 59	DEADMANS CREEK	7.9	28.06
1	31 0012	ALP	STATE ROUTE 4	SILVER CREEK	27.98	27.94
1	29 0017	SJ	STATE ROUTE 99 SB	LITTLEJOHNS CREEK	12.53	27.32
1	29 0180L	SJ	INTERSTATE 205 WB	CANAL ROAD	R11.72	27.29
1	29 0180R	SJ	INTERSTATE 205 EB	CANAL ROAD	R11.72	27.29
1	29 0214L	SJ	INTERSTATE 205 WB	EL RANCHO ROAD	R10.48	27.29
1	29 0214R	SJ	INTERSTATE 205 EB	EL RANCHO ROAD	R10.48	27.29
1	38 0126R	STA	INTERSTATE 5 NB	INGRAM CREEK	23.07	27.09
1	31 0015	ALP	STATE ROUTE 88	CAPLES LAKE SPILLWAY	0.46	26.85
1	31 0013	ALP	STATE ROUTE 4	EAST FORK CARSON RIVER	29.78	26.76
1	26 0050	AMA	STATE ROUTE 104	DRY CREEK	R3.62	26.64

22

Priority	Bridge Number	County 22	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	31 0001	ALP	STATE ROUTE 89	EAST FORK CARSON RIVER	13.3	26.57
1	31 0018	ALP	STATE ROUTE 4	PACIFIC CREEK	11.99	25.56
1	30 0020	CAL	STATE ROUTE 49	SIX MILE CREEK	6.51	25.53
1	38 0126L	STA	INTERSTATE 5 SB	INGRAM CREEK	23.07	23.64
1	31 0008	ALP	STATE ROUTE 4	JACKASS GULCH	R7.82	23.47
1	29 0237R	SJ	SR 4 EB	LINCOLN, UP RR, BNSF RY	R16.2	23.36

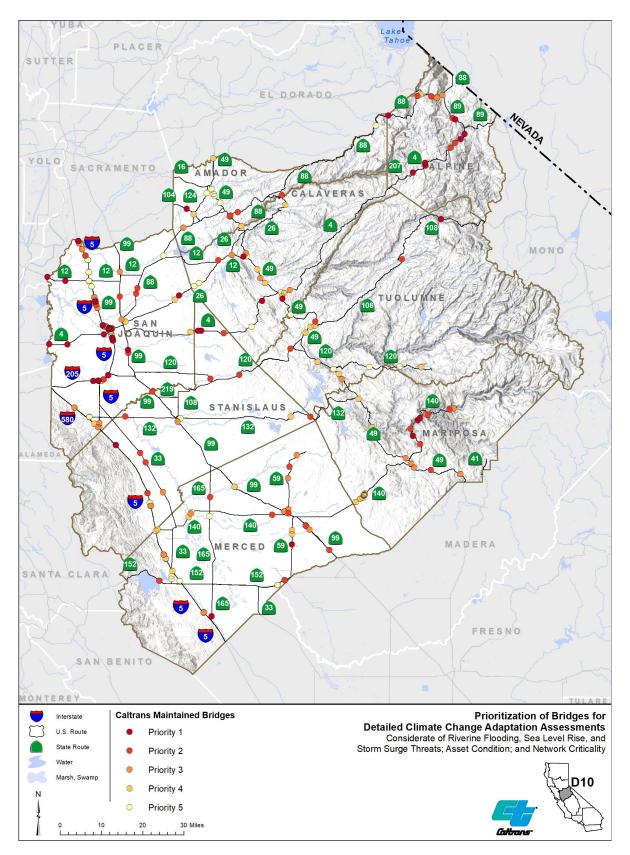


FIGURE 2: PRIORITIZATION OF BRIDGES FOR DETAILED ADAPTATION ASSESSMENTS

4.2. Large Culverts

A total of 14 large culverts were assessed for vulnerability to more severe riverine flooding associated with climate change. Figure 3 provides a map of all the large culverts potentially exposed to sea level rise, storm surge, and enhanced riverine flooding in the district and are colored by their priority level. Given the limited number of large culverts in District 10, it is hard to draw spatial patterns to the vulnerabilities. The top two Priority 1 large culverts with the highest cross-prioritization hazard score are in San Joaquin and Merced Counties. Both large culverts received higher scores due to riverine flood exposure and high traffic volumes. The remaining exposed large culverts are distributed throughout District 10.

Table 5 presents a summary of the two Priority 1 large culverts in District 10 sorted by their cross-hazard prioritization scores. A complete listing of all large culverts ranked by their prioritization scores appears in Table 9 in the appendix.

Priority	Culvert System Number	County ²³	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	29 0339	SJ	STATE ROUTE 132	LONE TREE CREEK	2.7	100.00
1	39 0040	MER	STATE ROUTE 152	LOS BANOS CREEK	18.2	96.21

TABLE 5: PRIORITY 1 LARGE CULVERTS

²³ CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus

\\S[)

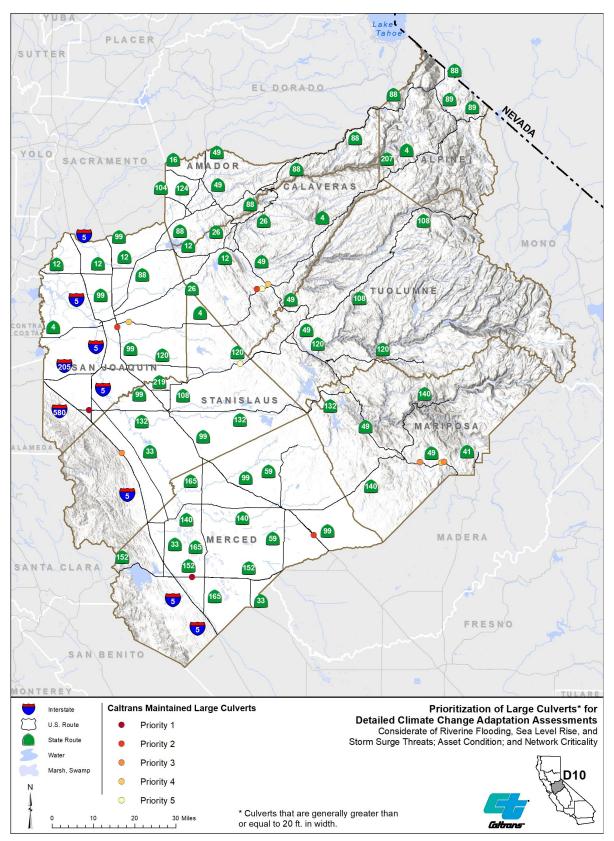


FIGURE 3: PRIORITIZATION OF LARGE CULVERTS FOR DETAILED ADAPTATION ASSESSMENTS

4.3. Small Culverts

A total of 588 small culverts were assessed for vulnerability to sea level rise, storm surge, and more severe riverine flooding and wildfire associated with climate change. Figure 4 provides a map of all the small culverts potentially exposed to more severe riverine flooding and wildfire in the district. The small culverts are colored by their priority level.

The map indicates several clusters of high priority small culverts. Notable clusters can be found along several different roadways in Alpine, Tuolumne, and Mariposa Counties, which are noted for their mountainous, rugged terrain and winding roadways. Specifically, small culverts with high cross-hazard prioritization scores include those on State Route 140 in Mariposa County, State Route 108 in Tuolumne County, and State Route 4 in Alpine County. Several of these assets also entail long detour routes to get around if closed.

Table 6 presents a summary of all the Priority 1 small culverts in District 10 sorted by their cross-hazard prioritization scores. A complete listing of all small culverts ranked by their prioritization scores appears in Table 10 in the appendix.

Priority	Culvert System Number	County ²⁴	Route	Postmile	Cross-Hazard Prioritization Score
1	310044002845	ALP	4	28.45	100.00
1	321080005298	TUO	108	52.98	90.97
1	321084005425	TUO	108	54.25	90.87
1	321084005351	TUO	108	53.51	90.29
1	321080005163	TUO	108	51.63	90.29
1	321084005361	TUO	108	53.61	90.27
1	321080005219	TUO	108	52.19	90.22
1	321080004931	TUO	108	49.31	89.24
1	321080004924	TUO	108	49.24	89.23
1	321084005491	TUO	108	54.91	88.72
1	321084005483	TUO	108	54.83	88.72
1	321084005642	TUO	108	56.42	88.70
1	321084005539	TUO	108	55.39	88.65
1	321084005443	TUO	108	54.43	88.57
1	321084005756	TUO	108	57.56	88.38
1	310040003037	ALP	4	30.37	88.20
1	321080004900	TUO	108	49	87.78
1	321080005110	TUO	108	51.1	86.77
1	310044002911	ALP	4	29.11	86.34
1	300044106135	CAL	4	61.35	86.21
1	31207000062	ALP	207	0.62	86.13
1	312070000012	ALP	207	0.12	85.61

TABLE 6: PRIORITY 1 SMALL CULVERTS

²⁴ ALP = Alpine; AMA = Amador; CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus; TUO = Tuolumne

Priority	Culvert System Number	County ²⁴	Route	Postmile	Cross-Hazard Prioritization Score
1	310040003005	ALP	4	30.05	82.78
1	310040003024	ALP	4	30.24	82.72
1	321084005692	TUO	108	56.92	81.51
1	401400003917	MPA	140	39.17	79.58
1	401400003927	MPA	140	39.27	79.58
1	401400003876	MPA	140	38.76	78.97
1	401400003850	MPA	140	38.5	77.80
1	401400003761	MPA	140	37.61	75.55
1	310890001174	ALP	89	11.74	75.17
1	401400004181	MPA	140	41.81	74.88
1	310890001057	ALP	89	10.57	74.49
1	401400003765	MPA	140	37.65	73.75
1	401400003771	MPA	140	37.71	73.75
1	321080004816	TUO	108	48.16	72.78
1	310890001139	ALP	89	11.39	72.26
1	300264000954	CAL	26	9.54	71.75
1	310890001181	ALP	89	11.81	71.51
1	310044000378	ALP	4	3.78	71.21
1	321080004654	TUO	108	46.54	71.00
1	321080004711	TUO	108	47.11	71.00
1	321080004748	TUO	108	47.48	70.98
1	321080004731	TUO	108	47.31	70.98
1	321080004715	TUO	108	47.15	70.94
1	401400004976	MPA	140	49.76	70.85
1	310880000006	ALP	88	0.06	69.34
1	310040002709	ALP	4	27.09	68.05
1	310044000657	ALP	4	6.57	67.41
1	380040000309	STA	4	3.09	67.25
1	321080004801	TUO	108	48.01	67.25
1	310044000745	ALP	4	7.45	66.70
1	401400004944	MPA	140	49.44	66.69
1	310044000587	ALP	4	5.87	66.21
1	310044000477	ALP	4	4.77	66.11
1	310045200487	ALP	4	4.87	65.99
1	321084005854	TUO	108	58.54	65.94
1	310044000739	ALP	4	7.39	65.89
1	310044000360	ALP	4	3.6	65.81
1	310044000366	ALP	4	3.66	65.81
1	310890000802	ALP	89	8.02	65.62
1	310044000644	ALP	4	6.44	65.61

28

Caltrans Adaptation Priorities Report - District 10

Priority	Culvert System Number	County ²⁴	Route	Postmile	Cross-Hazard Prioritization Score
1	310044000653	ALP	4	6.53	65.55
1	380044000544	STA	4	5.44	64.71
1	321084005805	TUO	108	58.05	64.43
1	310890000788	ALP	89	7.88	64.34
1	321084006220	TUO	108	62.2	64.18
1	321084006194	TUO	108	61.94	64.16
1	321084006049	TUO	108	60.49	64.16
1	321084005850	TUO	108	58.5	64.15
1	321084006030	TUO	108	60.3	64.15
1	321084005845	TUO	108	58.45	64.14
1	321084006190	TUO	108	61.9	64.13
1	321084006097	TUO	108	60.97	64.10
1	380044000668	STA	4	6.68	63.60
1	310884001557	ALP	88	15.57	63.20
1	310044000821	ALP	4	8.21	63.12
1	380044000602	STA	4	6.02	63.09
1	320490000058	TUO	49	0.58	62.87
1	310880001737	ALP	88	17.37	62.87
1	320494000508	TUO	49	5.08	62.74
1	310880001665	ALP	88	16.65	62.55
1	300040002964	CAL	4	29.64	62.53
1	401400004392	MPA	140	43.92	62.12
1	310044000421	ALP	4	4.21	61.41
1	380044000511	STA	4	5.11	61.17
1	401400004884	MPA	140	48.84	60.99
1	310040002636	ALP	4	26.36	60.98
1	400490003925	MPA	49	39.25	60.76
1	321084006229	TUO	108	62.29	60.57
1	321084006120	TUO	108	61.2	60.49
1	321084006249	TUO	108	62.49	60.27
1	321084006349	TUO	108	63.49	59.95
1	401324100956	MPA	132	9.56	59.45
1	310040002186	ALP	4	21.86	59.10
1	401400004519	MPA	140	45.19	58.72
1	401400004531	MPA	140	45.31	58.67
1	300264000334	CAL	26	3.34	58.21
1	310884001593	ALP	88	15.93	58.12
1	321084006265	TUO	108	62.65	58.08
1	310044002515	ALP	4	25.15	57.82
1	260884106474	AMA	88	64.74	57.28

29

Priority	Culvert System Number	County ²⁴	Route	Postmile	Cross-Hazard Prioritization Score
1	401400003224	MPA	140	32.24	57.06
1	310884001950	ALP	88	19.5	57.03
1	310880001636	ALP	88	16.36	56.92
1	401400004507	MPA	140	45.07	56.87
1	401400004792	MPA	140	47.92	56.85
1	401400004624	MPA	140	46.24	56.85
1	401400004776	MPA	140	47.76	56.84
1	380044000567	STA	4	5.67	56.84
1	401400004659	MPA	140	46.59	56.84
1	310894101903	ALP	89	19.03	56.46
1	310880001721	ALP	88	17.21	56.33
1	300264000009	CAL	26	0.09	55.82
1	310894101938	ALP	89	19.38	55.65
1	380040000271	STA	4	2.71	54.64

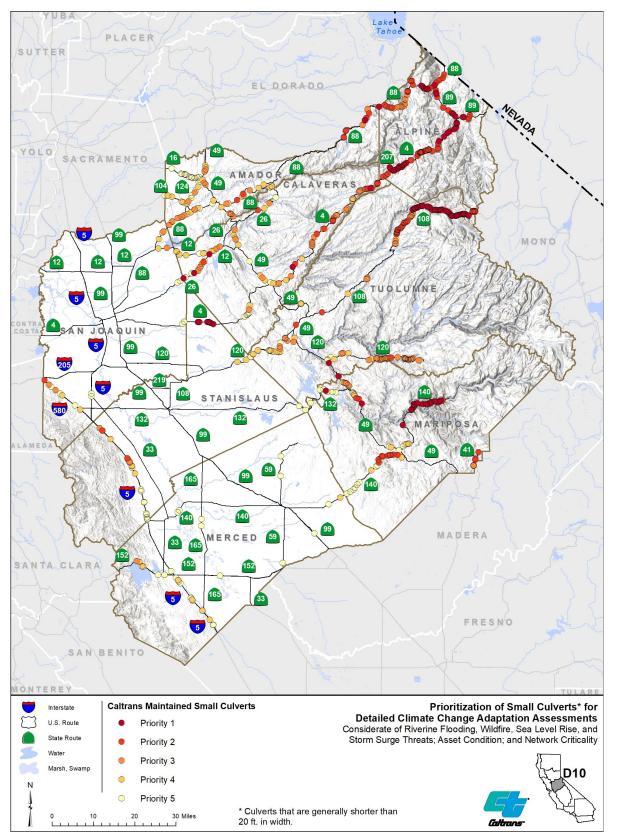


FIGURE 4: PRIORITIZATION OF SMALL CULVERTS FOR DETAILED ADAPTATION ASSESSMENTS

4.4. Roadways

A total of 3,323 roadway segments were assessed for vulnerability to sea level rise, storm surge, and temperature changes that affect pavement performance. To make the analysis as detailed as possible, the original segments were short with beginning and end points at intersections with other streets (including smaller local streets) in the roadway network. Once the processing of vulnerability scores was complete, smaller segments sharing the same priority score as their neighbors on the same route were consolidated into longer segments to simplify the presentation of the results. This reduced the number of segments to 478, the results for which are presented here.

Figure 5 provides a map of all the consolidated roadway segments potentially exposed to sea level rise, storm surge, and pavement degrading temperature changes in the district. Each segment of roadway is colored by priority level. 23 of the top 24 roadway segments receiving the highest cross-hazard prioritization scores are in San Joaquin County. Like the bridge analysis, these roadway segments are higher priority due to sea level rise and storm surge hazards in the Delta. Many of these highways are also high traffic routes, such as Interstate 5 and State Route 12.

Table 7 presents a summary of all the Priority 1 roadways in District 10 sorted by their cross-hazard prioritization scores. A complete listing of all roadways ranked by their prioritization scores appears in Table 11 in the appendix.

Priority	Route	Carriageway ²⁵	From County & Postmile / To County & Postmile ²⁶	Average Cross-Hazard Prioritization Score ²⁷
1	12	Р	SJ 12 0.003 / SJ 12 R4.66	66.94
1	12	Р	SJ 12 10.178 / SJ 12 10.213	66.94
1	12	Р	SJ 12 10.455 / SJ 12 10.821	66.94
1	12	Р	SJ 12 M4.98 / SJ 12 10.156	66.94
1	12	Р	SJ 12 10.454 / SJ 12 10.659	53.66
1	12	Р	SJ 12 6.05 / SJ 12 6.133	53.66
1	12	Р	SJ 12 8.724 / SJ 12 8.926	53.66
1	12	Р	SJ 12 9.575 / SJ 12 10.211	53.66
1	4	Р	CC 4 48.392 / SJ 4 12.889	43.18
1	4	Р	SJ 4 12.966 / SJ 4 15.905	43.18
1	4	Р	SJ 4 R15.318 / SJ 4 R16.033	43.18
1	4	Р	SJ 4 R16.069 / SJ 4 R16.069	43.18
1	4	Р	SJ 4 10.186 / SJ 4 10.517	42.42
1	4	Р	SJ 4 10.692 / SJ 4 11.746	42.42
1	4	Р	SJ 4 11.789 / SJ 4 11.955	42.42
1	4	Р	SJ 4 12.216 / SJ 4 12.889	42.42
1	4	Р	SJ 4 14.471 / SJ 4 15.906	42.42

TABLE 7: PRIORITY 1 ROADWAYS

²⁶ CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus

²⁷ These values represent the average of the cross-hazard prioritization scores amongst all the abutting small segments on the same route sharing a common priority level that were aggregated to form the longer segments listed in this table.

²⁵ Caltrans' alignment codes designate the carriageway on divided roadways: "P" always represents northbound or eastbound carriageways whereas "S" always represents southbound or westbound carriageways. Undivided roadways are always indicated with a "P".

Priority	Route Carriageway ²⁵		From County & Postmile / To County & Postmile ²⁶	Average Cross-Hazard Prioritization Score ²⁷
1	4	Р	SJ 4 R15.327 / SJ 4 R16.008	42.42
1	4	Р	SJ 4 R16.044 / SJ 4 R16.044	42.42
1	4	Р	SJ 4 R16.093 / SJ 4 R16.266	42.42
1	4	Р	SJ 4 R6.006 / SJ 4 R6.119	42.42
1	4	Р	SJ 4 R8.519 / SJ 4 R8.722	42.42
1	4	Р	SJ 4 T13.935 / SJ 4 T14.126	42.42
1	5	Р	MER 5 0.008 / MER 5 6.286	38.61
1	5	Р	MER 5 6.458 / STA 5 0.009	38.61
1	5	Р	SJ 5 2.461 / SJ 5 R21.719	38.61
1	5	Р	SJ 5 25.368 / SJ 5 26.155	38.61
1	5	Р	SJ 5 26.198 / SJ 5 26.198	38.61
1	5	Р	SJ 5 26.204 / SJ 5 26.571	38.61
1	5	Р	SJ 5 26.966 / SJ 5 27.947	38.61
1	5	Р	SJ 5 28.295 / SJ 5 29.57	38.61
1	5	Р	SJ 5 29.646 / SJ 5 34.269	38.61
1	5	Р	SJ 5 34.293 / SJ 5 39.292	38.61
1	5	Р	SJ 5 39.593 / SJ 5 41.931	38.61
1	5	Р	SJ 5 44.439 / SAC 5 0.018	38.61
1	5	Р	SJ 5 R22.525 / SJ 5 25.36	38.61
1	5	Р	STA 5 0.879 / STA 5 9.456	38.61
1	5	Р	STA 5 23.244 / STA 5 28.011	38.61
1	5	Р	MER 5 0.009 / MER 5 6.069	38.32
1	5	Р	MER 5 6.443 / STA 5 0.003	38.32
1	5	Р	SJ 5 2.461 / SJ 5 R21.698	38.32
1	5	Р	SJ 5 25.652 / SJ 5 26.132	38.32
1	5	Р	SJ 5 26.163 / SJ 5 26.165	38.32
1	5	Р	SJ 5 26.172 / SJ 5 26.172	38.32
1	5	Р	SJ 5 26.213 / SJ 5 26.542	38.32
1	5	Р	SJ 5 26.971 / SJ 5 28.29	38.32
1	5	Р	SJ 5 28.324 / SJ 5 29.569	38.32
1	5	Р	SJ 5 29.647 / SJ 5 34.261	38.32
1	5	Р	SJ 5 34.285 / SJ 5 39.14	38.32
1	5	Р	SJ 5 39.583 / SJ 5 42.668	38.32
1	5	Р	SJ 5 44.423 / SJ 5 49.818	38.32
1	5	Р	SJ 5 R22.775 / SJ 5 25.365	38.32
1	5	Р	STA 5 0.884 / STA 5 9.449	38.32
1	5	Р	STA 5 23.002 / STA 5 0.159	38.32
1	205	Р	ALA 205 L0.005 / SJ 205 R13.299	36.97
1	205	Р	ALA 205 L0.005 / SJ 205 R12.867	35.66
1	120	Р	SJ 120 6.244 / SJ 120 6.197	29.30

Priority	Route	Carriageway ²⁵	From County & Postmile / To County & Postmile ²⁶	Average Cross-Hazard Prioritization Score ²⁷
1	120	Р	SJ 120 R0.505 / SJ 120 T7.131	29.30
1	99	Р	MER 99 0 / MER 99 R11.71	28.67
1	99	Р	MER 99 13.094 / MER 99 27.35	28.67
1	99	Р	SJ 99 5.309 / SJ 99 17.213	28.67
1	99	Р	MER 99 0.004 / MER 99 R11.726	28.51
1	99	Р	MER 99 13.11 / MER 99 27.485	28.51
1	99	Р	SJ 99 5.582 / SJ 99 17.213	28.51
1	580	S	SJ 580 15.341R / SJ 580 8.344	28.46
1	580	S	SJ 580 7.972 / SJ 580 1.398	28.46
1	120	Р	SJ 120 6.197 / SJ 120 6.245	27.96
1	120	Р	SJ 120 R0.493 / SJ 120 T7.132	27.96
1	120	Р	STA 120 11.049 / STA 120 17.052	27.96
1	120	Р	STA 120 6.901 / STA 120 10.118	27.96
1	580	Р	ALA 580 0.092R / SJ 580 8.299	27.85
1	580	Р	SJ 580 8.153 / SJ 580 1.413	27.85
1	59	Р	MER 59 14.782 / MER 59 14.805	27.27
1	59	Р	MER 59 15.033 / MER 59 15.157	27.27
1	59	Р	MER 59 15.347 / MER 59 15.37	27.27
1	152	Р	MER 152 11.277 / MER 152 13.553	26.64
1	152	Р	MER 152 13.835 / MER 152 14.713	26.64
1	152	Р	MER 152 R9.799 / MER 152 R10.931	26.64
1	152	Р	MER 152 11.281 / MER 152 13.531	26.60
1	152	Р	MER 152 13.833 / MER 152 14.709	26.60
1	152	Р	MER 152 R7.909 / MER 152 R10.928	26.60
1	132	Р	SJ 132 3.226 / SJ 132 4.246	26.34
1	132	Р	SJ 132 L0.582 / SJ 132 0.245	26.34
1	132	Р	SJ 132 3.226 / SJ 132 6.702	25.99
1	132	Р	SJ 132 7.096 / STA 132 1.377	25.99
1	132	Р	SJ 132 L0.094 / SJ 132 0.245	25.99
1	132	Р	STA 132 1.687 / STA 132 4.409	25.99
1	132	Р	STA 132 4.534 / STA 132 6.126	25.99
1	132	Р	STA 132 6.602 / STA 132 8.328	25.99
1	140	Р	MER 140 35.548 / MER 140 35.75	25.72
1	140	Р	MER 140 35.874 / MER 140 35.947	25.72
1	49	Р	AMA 49 4.805 / AMA 49 5.714	25.63
1	49	Р	AMA 49 5.991 / AMA 49 6.047	25.63
1	49	Р	AMA 49 R7.065 / AMA 49 R8.434	25.63
1	49	Р	AMA 49 R8.734 / AMA 49 14.661	25.63
1	49	Р	TUO 49 15.138 / TUO 49 15.697	25.63
1	49	Р	TUO 49 16.017 / TUO 49 17.002	25.63

Priority	Route	Carriageway ²⁵	From County & Postmile / To County & Postmile ²⁶	Average Cross-Hazard Prioritization Score ²⁷
1	49	Р	TUO 49 17.937 / TUO 49 20.616	25.63
1	49	Р	TUO 49 R10.6 / TUO 49 14.327	25.63
1	108	Р	TUO 108 R0.04 / TUO 108 R4.568	25.58
1	165	Р	MER 165 8.137 / MER 165 8.81	25.51
1	88	Р	AMA 88 12.679 / AMA 88 12.775	25.45
1	88	Р	AMA 88 14.902 / AMA 88 15.591	25.45
1	88	Р	SJ 88 14.775 / SJ 88 16.275	25.45

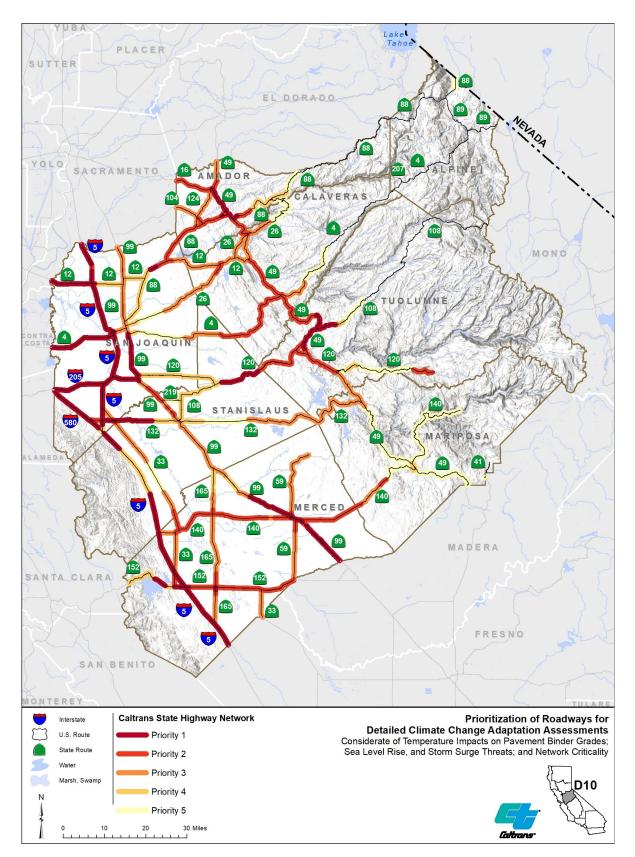
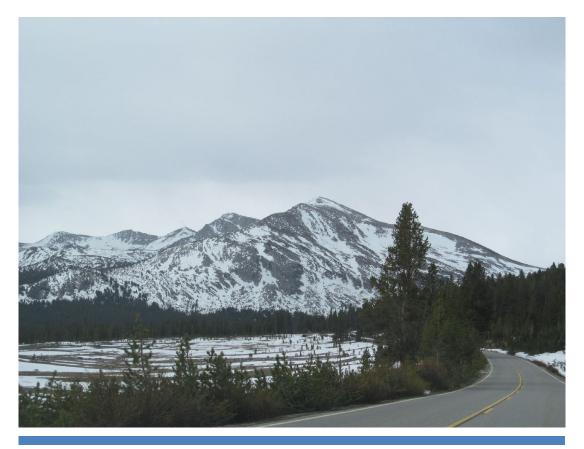



FIGURE 5: PRIORITIZATION OF ROADWAYS FOR DETAILED ADAPTATION ASSESSMENTS

5. NEXT STEPS

This report has identified the bridge, large culvert, small culvert, and roadway assets exposed to a variety of climate hazards in District 10 and assigned them priority levels for detailed assessments based on their vulnerability rating. Caltrans' next step will be to begin undertaking these detailed adaptation assessments for the identified assets starting with the highest priority (Priority 1) assets first and then proceeding to lower priority assets thereafter. These detailed adaptation assessments will take a closer look at the exposure to each asset using more localized climate projections and more detailed engineering analyses. If impacts are verified, Caltrans will develop and evaluate adaptation options for the asset to ensure that it is able to withstand future climate changes. Importantly, the detailed adaptation assessments will include coordination with key stakeholder groups whose actions affect or are affected by the asset and its adaptation.

CALIFORNIA HIGHWAY 120

Another next step will be to integrate the prioritization measures into the asset management system used in the district. This will ensure that climate change is a consideration in the identification of future projects alongside traditional asset condition metrics. As noted previously, assets identified for capital investments, especially those flagged as being a high priority for climate change, should then undergo detailed climate change assessments prior to project programming.

In addition, district staff can use the results of this study be a useful starting point to begin discussions with various important stakeholders in the district about addressing climate change and its impacts. This includes state and federal environmental agencies, the National Forest Service, forest product companies (major landowners in the district whose actions directly affect the road network), and others. Multi-agency stakeholder coordination and involvement of the private sector are essential because the impacts from climate change, and ability to effectively address those impacts, cross both jurisdictional and ownership boundaries. For example, Caltrans could increase the size of a culvert to accommodate higher stormwater and debris flows while the more cost-effective solution may be better land management in the adjacent drainage area. The approach to climate change cannot just be Caltrans-centric. A common framework across all state agencies must be established for truly effective long-term solutions to be achieved.

6. APPENDIX

TABLE 8: PRIORITIZATION OF BRIDGES FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	29 0252L	SJ	INTERSTATE 5 SB	SAN JOAQUIN RIVER 04	R14.46	100.00
1	29 0252R	SJ	I-5 NB & SR 120 EB	SAN JOAQUIN RIVER 05	R14.46	94.84
1	29 0221L	SJ	INTERSTATE 5 SB	FRENCH CAMP SLOUGH	R23.25	83.80
1	29 0045	SJ	STATE ROUTE 4	OLD RIVER	0.01	81.72
1	29 0043	SJ	STATE ROUTE 12	MOKELUMNE RIVER	0.01	80.74
1	29 0101	SJ	STATE ROUTE 12	LITTLE POTATO SLOUGH	R4.44	80.44
1	29 0177L	SJ	INTERSTATE 5 SB	BEAR CREEK	34.26	77.07
1	29 0177R	SJ	INTERSTATE 5 NB	BEAR CREEK	34.25	77.04
1	29 0049	SJ	STATE ROUTE 4	MIDDLE RIVER	4.42	76.83
1	29 0197L	SJ	INTERSTATE 5	MOKELUMNE RIVER	49.78	73.62
1	29 0197R	SJ	INTERSTATE 5	MOKELUMNE RIVER	49.78	72.68
1	29 0221R	SJ	INTERSTATE 5 NB	FRENCH CAMP SLOUGH	R23.25	67.26
1	29 0223L	SJ	INTERSTATE 5 SB	WALKER SLOUGH	R23.93	64.46
1	29 0223R	SJ	INTERSTATE 5 NB	WALKER SLOUGH	R23.93	57.36
1	29 0050	SJ	SR 4	SAN JOAQUIN RIVER	14.15	48.65
1	29 0240L	SJ	SR 4 WB	SPBR & GARFIELD AVE	R15.67	44.20
1	29 0240R	SJ	SR 4 EB	SPBR & GARFIELD AVE	R15.67	44.20
1	38 0039	STA	STATE ROUTE 4	DUCK CREEK	0.88	42.54
1	40 0007	MPA	STATE ROUTE 140	SWEETWATER CREEK	37.83	42.32
1	29 0176L	SJ	ROUTE 5	WEBER, PERSHING, FREMONT	26.47	42.17
1	29 0176R	SJ	ROUTE 5	WEBER, PERSHING, FREMONT	26.47	40.09
1	31 0009	ALP	STATE ROUTE 4	NORTH FORK MOKELUMNE RIV	12.94	38.74
1	29 0173L	SJ	INTERSTATE 5 SB	SHIMIZU DR & SMITH CANAL	28.26	36.06
1	30 0036	CAL	STATE ROUTE 4	W BRANCH CHEROKEE CREEK	16.15	34.51
1	40 0004	MPA	STATE ROUTE 140	BEAR CREEK	R31.29	34.34
1	29 0173R	SJ	INTERSTATE 5 NB	SHIMIZU DR & SMITH CANAL	28.26	33.40
1	38 0040	STA	STATE ROUTE 4	ROCK CREEK	R1.68	32.08
1	29 0042	SJ	STATE ROUTE 26	DUCK CREEK	16.87	31.01
1	32 0012	TUO	STATE ROUTE 108	EAGLE CREEK	53.03	30.52
1	30 0007	CAL	STATE ROUTE 12	N. FORK CALAVERAS RIVER	17.25	29.65
1	39 0199	MER	STATE ROUTE 165	CALIFORNIA AQUEDUCT	1.08	28.65
1	40 0006	MPA	STATE ROUTE 140	SLATE GULCH	37.09	28.52
1	39 0061	MER	STATE ROUTE 59	DEADMANS CREEK	7.9	28.06
1	31 0012	ALP	STATE ROUTE 4	SILVER CREEK	27.98	27.94

28 ALP = Alpine; AMA = Amador; CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus; TUO = Tuolumne

🗲 Caltrans

\\SD

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	29 0017	SJ	STATE ROUTE 99 SB	LITTLEJOHNS CREEK	12.53	27.32
1	29 0180L	SJ	INTERSTATE 205 WB	CANAL ROAD	R11.72	27.29
1	29 0180R	SJ	INTERSTATE 205 EB	CANAL ROAD	R11.72	27.29
1	29 0214L	SJ	INTERSTATE 205 WB	EL RANCHO ROAD	R10.48	27.29
1	29 0214R	SJ	INTERSTATE 205 EB	EL RANCHO ROAD	R10.48	27.29
1	38 0126R	STA	INTERSTATE 5 NB	INGRAM CREEK	23.07	27.09
1	31 0015	ALP	STATE ROUTE 88	CAPLES LAKE SPILLWAY	0.46	26.85
1	31 0013	ALP	STATE ROUTE 4	EAST FORK CARSON RIVER	29.78	26.76
1	26 0050	AMA	STATE ROUTE 104	DRY CREEK	R3.62	26.64
1	31 0001	ALP	STATE ROUTE 89	EAST FORK CARSON RIVER	13.3	26.57
1	31 0018	ALP	STATE ROUTE 4	PACIFIC CREEK	11.99	25.56
1	30 0020	CAL	STATE ROUTE 49	SIX MILE CREEK	6.51	25.53
1	38 0126L	STA	INTERSTATE 5 SB	INGRAM CREEK	23.07	23.64
1	31 0008	ALP	STATE ROUTE 4	JACKASS GULCH	R7.82	23.47
1	29 0237R	SJ	SR 4 EB	LINCOLN, UP RR, BNSF RY	R16.2	23.36
2	29 0237L	SJ	SR 4 WB	LINCOLN, UP RR, BNSF RY	R16.2	23.07
2	29 0247L	SJ	INTERSTATE 5 SB	BEAVER SLOUGH	45.87	22.33
2	29 0247R	SJ	INTERSTATE 5 NB	BEAVER SLOUGH	45.86	22.30
2	29 0199L	SJ	INTERSTATE 5 SB	MOSHER SLOUGH	33.5	22.16
2	29 0199R	SJ	INTERSTATE 5 NB	MOSHER SLOUGH	33.49	22.13
2	38 0041	STA	STATE ROUTE 4	HOODS CREEK	7.28	21.80
2	39 0250	MER	STATE ROUTE 59	MERCED RIVER	27.15	21.27
2	31 0014	ALP	STATE ROUTE 88	WEST FORK CARSON RIVER	12.46	21.12
2	40 0023	MPA	STATE ROUTE 49	W FORK CHOWCHILLA RIVER	11.44	21.04
2	38 0111L	STA	INTERSTATE 5 SB	CROW CREEK	8.94	21.01
2	38 0111R	STA	INTERSTATE 5 NB	CROW CREEK	8.95	21.00
2	30 0049	CAL	STATE ROUTE 26	N. FORK MOKELUMNE RIVER	38.31	20.43
2	29 0023	SJ	STATE ROUTE 99 SB	LONE TREE SLOUGH	11.8	20.17
2	38 0065	STA	STATE ROUTE 120	BLITZ CREEK	12.22	20.16
2	29 0061	SJ	U.S. HIGHWAY 88	MOSHER SLOUGH	7.53	19.84
2	29 0004	SJ	STATE ROUTE 99 SB	BEAR CREEK	25.64	19.65
2	39 0217	MER	STATE ROUTE 165	MERCED RIVER	30.29	19.33
2	40 0003	MPA	STATE ROUTE 140	BEAR CREEK	28.33	19.09
2	38 0045	STA	STATE ROUTE 132	SAN JOAQUIN RIVER 07	R2.43	18.32
2	29 0032L	SJ	INTERSTATE 5 SB	PARADISE CUT	R12.99	18.22

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
2	38 0023	STA	STATE ROUTE 120	STANISLAUS RIVER	4.26	17.97
2	39 0001L	MER	STATE ROUTE 99 SB	DUTCHMAN CREEK	2.62	17.96
2	29 0032R	SJ	INTERSTATE 5 NB	PARADISE CUT	R13.01	17.95
2	39 0094	MER	STATE ROUTE 140	BLACK RASCAL CREEK	31.6	17.88
2	40 0009	MPA	STATE ROUTE 140	MERCED RIVER	49.85	17.71
2	26 0002	AMA	STATE ROUTE 88	ROCKY CREEK	16.66	17.69
2	29 0239L	SJ	STATE ROUTE 4	MADISON STREET	R16.47	17.58
2	29 0239R	SJ	STATE ROUTE 4	MADISON STREET	R16.47	17.58
2	39 0034L	MER	STATE ROUTE 152 WB	EASTSIDE BYPASS CHANNEL	R39.29	17.39
2	31 0011	ALP	STATE ROUTE 4	SILVER CREEK	26.15	17.00
2	26 0037	AMA	STATE ROUTE 88	MIDDLE FORK JACKSON CRK	14.56	16.91
2	38 0063	STA	STATE ROUTE 132	QUARTZ LEDGE CREEK	49.62	16.77
2	40 0008	MPA	STATE ROUTE 140	SOUTH FORK MERCED RIVER	43.22	16.57
2	29 0013L	SJ	STATE ROUTE 99 SB	STANISLAUS RIVER	0	16.55
2	38 0020	STA	STATE ROUTE 33	SALADO CREEK	13.94	16.48
2	31 0010	ALP	STATE ROUTE 4	RAYMOND MEADOW CREEK	24.47	16.46
2	31 0026	ALP	STATE ROUTE 88	WEST FORK CARSON RIVER	16.13	16.44
2	39 0034R	MER	STATE ROUTE 152 EB	EASTSIDE BYPASS CHANNEL	R39.29	16.42
2	39 0145L	MER	STATE ROUTE 152 WB	SAN LUIS DAM FOREBAY	R10.05	16.11
2	40 0005	MPA	STATE ROUTE 140	BEAR CREEK	34.08	16.06
2	32 0006	TUO	STATE ROUTE 49	WOODS CREEK	17.49	16.01
2	32 0010	TUO	STATE ROUTE 108	S FORK STANISLAUS RIVER	31.24	15.76
2	38 0019	STA	STATE ROUTE 33	DEL PUERTO CREEK	16.54	15.58
2	39 0009L	MER	STATE ROUTE 59 SB	BEAR CREEK	15.23	15.31
2	30 0002	CAL	STATE ROUTE 12	COSGROVE CREEK	10.32	15.30
2	29 0062	SJ	U.S. HIGHWAY 88	BEAR CREEK	8.91	15.10
2	31 0002	ALP	STATE ROUTE 89	MARKLEEVILLE CREEK	14.69	15.06
2	39 0007L	MER	STATE ROUTE 99 SB	MILES CREEK	10.83	14.94
2	32 0034	TUO	STATE ROUTE 120	ALKALI CREEK	11.29	14.64
3	29 0200L	SJ	INTERSTATE 5 SB	MCAULIFFE RD	34.46	14.36
3	29 0209R	SJ	INTERSTATE 5 NB	EIGHT MILE RD	35.3	14.36
3	26 0036	AMA	STATE ROUTE 88	SOUTH FORK JACKSON CREEK	14.3	14.17
3	38 0107L	STA	INTERSTATE 5 SB	ORESTIMBA CREEK	5.73	14.13

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
3	39 0087	MER	S BR INGALSBE SLGH	SOUTH BR INGALSBE SLOUGH	31.25	14.12
3	38 0107R	STA	INTERSTATE 5 NB	ORESTIMBA CREEK	5.73	14.11
3	39 0069	MER	STATE ROUTE 59	EDENDALE CREEK	24.09	13.81
3	40 0044	MPA	STATE ROUTE 49	MARIPOSA CREEK	19.61	13.56
3	30 0006	CAL	STATE ROUTE 12	HAUPT CREEK	13.93	13.55
3	40 0048	MPA	STATE ROUTE 49	E FORK CHOWCHILLA RIVER	2.87	13.44
3	39 0153L	MER	INTERSTATE 5 SB	ORTIGALITA CREEK	8.89	13.43
3	40 0010	MPA	STATE ROUTE 140	CRANE CREEK	50.93	13.40
3	31 0003	ALP	STATE ROUTE 89	WEST FORK CARSON RIVER	21.31	12.94
3	29 0195R	SJ	INTERSTATE 5	BUENA VISTA UC	27.28	12.87
3	39 0068	MER	STATE ROUTE 59	BLACK RASCAL CANAL	16.27	12.86
3	39 0153R	MER	INTERSTATE 5 NB	ORTIGALITA CREEK	8.89	12.82
3	38 0078L	STA	STATE ROUTE 99 SB	ZEFF RD & TUOLUMNE RIVER	R14.93	12.81
3	29 0248L	SJ	INTERSTATE 5 SB	BARBER ROAD	49.18	12.81
3	39 0091	MER	STATE ROUTE 140	NORTH BRANCH MUD SLOUGH	11.32	12.80
3	29 0116	SJ	STATE ROUTE 99 SB	STOCKTON DIVERTING CANAL	20.12	12.78
3	29 0235L	SJ	SR 4 WB	E4-N5, W4-S5 CONN RAMPS	R16.02	12.59
3	29 0235R	SJ	SR 4 EB	E4-N5, W4-S5 CONN RAMPS	R16.01	12.59
3	29 0250L	SJ	INTERSTATE 5 SB	WALNUT GROVE ROAD	47.61	12.58
3	29 0250R	SJ	INTERSTATE 5 NB	WALNUT GROVE ROAD	47.6	12.58
3	39 0004	MER	STATE ROUTE 99	DUCK SLOUGH	9.43	12.54
3	29 0212R	SJ	INTERSTATE 5 NB	W HAMMER LANE	32.66	12.33
3	26 0051	AMA	STATE ROUTE 88	JACKSON CREEK OVERFLOW	2.94	12.32
3	38 0021	STA	STATE ROUTE 33	ORESTIMBA CREEK	5.57	12.32
3	31 0025	ALP	STATE ROUTE 88	WEST FORK CARSON RIVER	17.76	12.16
3	40 0021	MPA	STATE ROUTE 49	STOCKTON CREEK	17.2	12.14
3	29 0195L	SJ	INTERSTATE 5	BUENA VISTA UC	27.28	12.10
3	40 0002	MPA	STATE ROUTE 140	MARIPOSA CREEK	21.19	11.98
3	39 0010R	MER	STATE ROUTE 99 NB	BLACK RASCAL CANAL	17.3	11.83
3	39 0010L	MER	STATE ROUTE 99 SB	BLACK RASCAL CANAL	17.3	11.70
3	30 0017	CAL	STATE ROUTE 49	SAN ANTONIO CREEK	14.09	11.68
3	30 0031	CAL	STATE ROUTE 49	NORTH FORK CALAVERAS RIV	R21.49	11.54
3	39 0176L	MER	INTERSTATE 5	QUINTO CREEK	25.96	11.53
3	29 0212L	SJ	INTERSTATE 5 SB	W HAMMER LANE	32.66	11.50
3	29 0171L	SJ	INTERSTATE 580	HOSPITAL CREEK	0.49	11.37

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
3	29 0196	SJ	INTERSTATE 5	UP RR SPUR, W ACACIA ST	27.79	11.23
3	29 0209L	SJ	INTERSTATE 5 SB	EIGHT MILE RD	35.3	11.17
3	30 0009	CAL	STATE ROUTE 4	SIX MILE CREEK	24.03	11.07
3	29 0200R	SJ	INTERSTATE 5 NB	MCAULIFFE RD	34.46	11.06
3	26 0035	AMA	STATE ROUTE 49	JACKSON CREEK	4.1	11.03
3	39 0176R	MER	INTERSTATE 5	QUINTO CREEK	25.96	11.03
3	32 0033	TUO	STATE ROUTE 49	JACKASS GULCH	R2.99	10.97
3	29 0081L	SJ	INTERSTATE 580	CORRAL HOLLOW CREEK	7.88	10.96
3	29 0081R	SJ	INTERSTATE 580	CORRAL HOLLOW CREEK	7.88	10.95
3	40 0058	MPA	STATE ROUTE 140	MERCED RIVER	42.5	10.94
3	29 0002L	SJ	STATE ROUTE 99 SB	MOKELUMNE RI, FRONTAGE R	31.72	10.93
3	29 0187L	SJ	INTERSTATE RTE 5 S	CALIFORNIA AQUEDUCT	2.07	10.91
4	39 0174L	MER	INTERSTATE 5	DELTA-MENDOTA CANAL	24.84	10.84
4	39 0063	MER	STATE ROUTE 59	MARIPOSA CREEK	10.38	10.79
4	30 0019	CAL	STATE ROUTE 49	ANGELS CREEK	7.16	10.73
4	39 0065	MER	STATE ROUTE 59	OWENS CREEK	11.37	10.72
4	32 0032	TUO	STATE ROUTE 49	MOCCASIN CREEK	4.47	10.69
4	30 0018	CAL	STATE ROUTE 49	SAN DOMINGO CREEK	12.51	10.68
4	39 0181L	MER	INTERSTATE 5 SB	GARZAS CREEK	32.11	10.66
4	32 0018	TUO	STATE ROUTE 120	DON PEDRO RESERVOIR	R19.61	10.59
4	30 0016	CAL	STATE ROUTE 49	CALAVERITAS CREEK	16.41	10.55
4	29 0225L	SJ	INTERSTATE 5 SB	STATE RTE 4 (CHARTER WY)	25.35	10.54
4	29 0225R	SJ	INTERSTATE 5 NB	STATE RTE 4 (CHARTER WY)	25.35	10.54
4	39 0145R	MER	STATE ROUTE 152 EB	SAN LUIS DAM FOREBAY	R10.05	10.48
4	29 0232L	SJ	INTERSTATE 5 SB	STATE ROUTE 4	26.12	10.48
4	29 0232R	SJ	INTERSTATE 5 NB	STATE ROUTE 4	26.12	10.48
4	29 0141L	SJ	INTERSTATE 580	LONE TREE CREEK	1.7	10.41
4	31 0017	ALP	STATE ROUTE 89	WEST FORK CARSON RIVER	21.46	10.39
4	29 0117R	SJ	INTERSTATE RTE 5 N	HOSPITAL CREEK	1.1	10.36
4	40 0011	MPA	STATE ROUTE 140	MILES CREEK	0.79	10.23
4	39 0167L	MER	INTERSTATE 5	SAN LUIS WASTEWAY	21.42	10.23
4	40 0047	MPA	STATE ROUTE 49	MERCED RIVER	R34.35	10.00
4	29 0117L	SJ	INTERSTATE RTE 5 S	HOSPITAL CREEK	1.1	9.95
4	26 0005	AMA	STATE ROUTE 104	SUTTER CREEK	R5.86	9.79
4	40 0012	MPA	STATE ROUTE 140	MILES CREEK	2.13	9.78

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
4	30 0052	CAL	STATE ROUTE 26	M. FORK MOKELUMNE RIVER	R33.65	9.77
4	32 0059	TUO	SR 108	SR 49 NB & WOODS CREEK	R.03	9.57
4	40 0013	MPA	STATE ROUTE 140	MILES CREEK	2.89	9.47
4	40 0016	MPA	STATE ROUTE 140	MILES CREEK	3.64	9.41
4	40 0018	MPA	STATE ROUTE 140	MILES CREEK	4.06	9.36
4	29 0056	SJ	STATE ROUTE 4	DUCK CREEK	36.8	9.31
4	39 0090	MER	STATE ROUTE 140	LOS BANOS CREEK	10.31	9.16
4	40 0014	MPA	STATE ROUTE 140	MILES CREEK	3.46	9.16
4	40 0015	MPA	STATE ROUTE 140	MILES CREEK	3.5	9.15
4	32 0004	TUO	STATE ROUTE 49	WOODS CREEK	13.52	9.13
4	40 0017	MPA	STATE ROUTE 140	MILES CREEK	3.81	9.10
4	39 0007R	MER	STATE ROUTE 99 NB	MILES CREEK	10.83	9.09
4	26 0012	AMA	STATE ROUTE 49	MOKELUMNE RIVER	0.01	9.08
4	40 0019	MPA	STATE ROUTE 49	MAXWELL CREEK	44.62	8.89
4	38 0154	STA	STATE ROUTE 132	TUOLUMNE RIVER	R43.77	8.70
4	26 0033	AMA	STATE ROUTE 49	COSUMNES RIVER	22.09	8.55
4	29 0229L	SJ	INTERSTATE 5	ANDERSON STREET	25.64	8.54
4	39 0174R	MER	INTERSTATE 5	DELTA-MENDOTA CANAL	24.86	8.46
4	32 0036	TUO	SR 120	SOUTH FORK TUOLUMNE RIV	R53.02	8.46
4	39 0006L	MER	STATE ROUTE 99 SB	OWENS CREEK	10.55	7.99
4	30 0056	CAL	STATE ROUTE 4	ANGELS CREEK	R22.8	7.95
4	29 0041	SJ	STATE ROUTE 26	CALAVERAS RIVER	15.3	7.91
4	29 0040	SJ	STATE ROUTE 26	STOCKTON DIVERTING CANAL	1.9	7.79
4	39 0168	MER	STATE ROUTE 140	DELTA-MENDOTA CANAL	0.58	7.63
4	29 0248R	SJ	INTERSTATE 5	BARBER ROAD	49.18	7.43
4	39 0015L	MER	STATE ROUTE 99 SB	MERCED RIVER	R31	7.39
4	32 0005	TUO	STATE ROUTE 49	WOODS CREEK	15.49	7.26
5	29 0198R	SJ	INTERSTATE 5	CARLTON AVE	27.66	7.23
5	26 0049	AMA	STATE ROUTE 88	SILVER LAKE SPILLWAY	R65.82	7.22
5	29 0222L	SJ	INTERSTATE 5 SB	DOWNING AVENUE	R23.66	7.14
5	29 0224L	SJ	INTERSTATE 5	EIGHTH STREET	24.64	7.14
5	29 0198L	SJ	INTERSTATE 5	CARLTON AVE	27.66	7.08
5	39 0015R	MER	STATE ROUTE 99 NB	MERCED RIVER	R30.97	7.03
5	30 0055	CAL	STATE ROUTE 4	CREEK & PENSTOCK PIPE	22.2	6.98
5	39 0246	MER	STATE ROUTE 165	SAN JOAQUIN RIVER 12	25.6	6.81
5	29 0265L	SJ	INTERSTATE 5 SB	TOM PAINE SLOUGH	R12.39	6.81

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
5	29 0265R	SJ	INTERSTATE 5 NB	TOM PAINE SLOUGH	R12.39	6.59
5	30 0024	CAL	STATE ROUTE 26	INDIAN CREEK	2.46	6.53
5	29 0231R	SJ	ROUTE 5 NB	CHURCH STREET	25.99	6.33
5	32 0040	TUO	STATE ROUTE 49	NEW MELONES RESVERVOIR	R27.28	5.85
5	38 0152	STA	STATE ROUTE 132	DRY CREEK	15.64	5.79
5	29 0064	SJ	U.S. HIGHWAY 88	MOKELUMNE RIVER	19.8	5.70
5	29 0188L	SJ	INTERSTATE 5	MONTE DIABLO AVE	27.91	5.68
5	29 0188R	SJ	INTERSTATE 5	MONTE DIABLO AVE	27.91	5.68
5	30 0023	CAL	STATE ROUTE 26	INDIAN CREEK	0.82	5.61
5	32 0058	TUO	STATE ROUTE 120	BIG CREEK	R37.78	5.60
5	39 0190	MER	SR 33 (JENSEN AVE)	CALIFORNIA AQUEDUCT	R14.41	5.44
5	39 0028L	MER	STATE ROUTE 152 WB	SAN JOAQUIN RIVER	R37.16	5.09
5	39 0132L	MER	STATE ROUTE 99 SB	BEAR CREEK	16.38	5.03
5	32 0035	TUO	STATE ROUTE 120	SOUTH FORK TUOLUMNE RIV	46.82	4.65
5	39 0162L	MER	INTERSTATE 5	CALIFORNIA AQUEDUCT	18.46	4.63
5	29 0254L	SJ	INTERSTATE 5 SB	I-5 FRONTAGE ROAD	38.06	4.49
5	29 0254R	SJ	INTERSTATE 5 NB	I-5 FRONTAGE ROAD	38.06	4.49
5	29 0245L	SJ	INTERSTATE 5 SB	TURNER ROAD	41.66	4.26
5	29 0245R	SJ	INTERSTATE 5 NB	TURNER ROAD	41.66	4.26
5	29 0246L	SJ	INTERSTATE 5 SB	PELTIER ROAD	44.72	4.26
5	29 0246R	SJ	INTERSTATE 5 NB	PELTIER ROAD	44.71	4.26
5	26 0017	AMA	STATE ROUTE 49	RANCHERIA CREEK	12.14	4.24
5	39 0092	MER	STATE ROUTE 140	SAN JOAQUIN RIVER 11	11.79	4.20
5	38 0108L	STA	INTERSTATE 5 SB	CALIFORNIA AQUEDUCT	6.47	4.17
5	38 0108R	STA	INTERSTATE 5 NB	CALIFORNIA AQUEDUCT	6.47	4.16
5	29 0255L	SJ	INTERSTATE 5 SB	STATE ROUTE 12	39.55	3.77
5	29 0255R	SJ	INTERSTATE 5 NB	STATE ROUTE 12	39.55	3.77
5	39 0121	MER	STATE ROUTE 33	DELTA-MENDOTA CANAL	R15.11	3.65
5	29 0224R	SJ	INTERSTATE 5	EIGHTH STREET	24.64	3.40
5	26 0028	AMA	STATE ROUTE 124	DRY CREEK	R8.5	2.75
5	29 0206R	SJ	STATE ROUTE 132 E	CALIFORNIA AQUEDUCT	0.81	2.58
5	26 0040	AMA	STATE ROUTE 49	SUTTER CREEK	R8.32	2.51
5	39 0028R	MER	STATE ROUTE 152 EB	San Joaquin River	R37.4	2.46
5	30 0030	CAL	STATE ROUTE 49	MURRAY CREEK	R20.69	2.22
5	26 0018	AMA	STATE ROUTE 49	DRY CREEK	13.57	2.14
5	32 0039	TUO	STATE ROUTE 120	MOCCASIN CREEK	R24.09	1.51

Priority	Bridge Number	County ²⁸	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
5	29 0206L	SJ	STATE ROUTE 132 W	CALIFORNIA AQUEDUCT	0.81	1.39
5	26 0043	AMA	STATE ROUTE 49	AMADOR CREEK	R10.56	0.48
5	29 0222R	SJ	INTERSTATE 5 NB	DOWNING AVENUE	R23.66	0.00
5	30 0034	CAL	STATE ROUTE 4	LITTLEJOHNS CREEK	R5.89	0.00

Priority	Culvert System Number	County ²⁹	Route	Feature Crossed	Postmile	Cross-Hazard Prioritization Score
1	29 0339	SJ	STATE ROUTE 132	LONE TREE CREEK	2.7	100.00
1	39 0040	MER	STATE ROUTE 152	LOS BANOS CREEK	18.2	96.21
2	29 0012	SJ	STATE ROUTE 99	DUCK CREEK	16.47	87.57
2	30 0047	CAL	STATE ROUTE 4	WATERMAN CREEK	17.6	80.08
2	39 0002L	MER	STATE ROUTE 99 SB	DEADMANS CREEK	5.22	56.14
3	40 0035	MPA	STATE ROUTE 49	PEG LEG CREEK	12.21	47.77
3	38 0121	STA	INTERSTATE 5	DEL PUERTO CREEK	18.13	47.08
3	40 0024	MPA	STATE ROUTE 49	OLIVER CREEK	5.46	39.76
4	40 0028	MPA	STATE ROUTE 49	DELONG CREEK	6.18	37.04
4	30 0042	CAL	STATE ROUTE 49	CHEROKEE CREEK	9.01	23.36
4	29 0053	SJ	STATE ROUTE 4	DUCK CREEK	R22.72	22.44
5	40 0025	MPA	STATE ROUTE 132	BLACKS CREEK	17.74	22.36
5	38 0009	STA	STATE ROUTE 120	WILDCAT CREEK	R15.04	19.16
5	30 0050	CAL	STATE ROUTE 4	CHEROKEE CREEK	R19.08	0.00

TABLE 9: PRIORITIZATION OF LARGE CULVERTS FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

²⁹ ALP = Alpine; AMA = Amador; CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus; TUO = Tuolumne

Cross-Hazard County³⁰ Priority Culvert System Number Postmile Route **Prioritization Score** 4 100.00 1 310044002845 ALP 28.45 1 321080005298 TUO 108 52.98 90.97 1 321084005425 TUO 108 54.25 90.87 1 321084005351 TUO 108 53.51 90.29 1 321080005163 TUO 108 51.63 90.29 1 321084005361 TUO 108 53.61 90.27 1 321080005219 TUO 108 52.19 90.22 TUO 108 49.31 1 321080004931 89.24 TUO 108 49.24 1 321080004924 89.23 1 321084005491 TUO 108 54.91 88.72 1 TUO 108 321084005483 54.83 88.72 1 321084005642 TUO 108 56.42 88.70 1 321084005539 TUO 108 55.39 88.65 1 321084005443 TUO 108 54.43 88.57 1 321084005756 TUO 108 57.56 88.38 1 310040003037 ALP 4 30.37 88.20 1 321080004900 TUO 108 49 87.78 1 321080005110 TUO 108 51.1 86.77 1 310044002911 ALP 4 29.11 86.34 1 300044106135 CAL 4 61.35 86.21 1 312070000062 ALP 207 0.62 86.13 1 31207000012 ALP 207 0.12 85.61 1 310040003005 ALP 4 30.05 82.78 1 310040003024 ALP 4 30.24 82.72 1 321084005692 TUO 108 56.92 81.51 1 401400003917 MPA 140 39.17 79.58 401400003927 MPA 140 39.27 79.58 1 140 38.76 1 401400003876 MPA 78.97 401400003850 MPA 140 38.5 77.80 1 1 401400003761 MPA 140 37.61 75.55 11.74 75.17 1 310890001174 ALP 89 41.81 1 401400004181 MPA 140 74.88 1 310890001057 ALP 89 10.57 74.49 1 401400003765 MPA 140 37.65 73.75 1 401400003771 MPA 140 37.71 73.75 1 321080004816 TUO 108 48.16 72.78

TABLE 10: PRIORITIZATION OF SMALL CULVERTS FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

³⁰ ALP = Alpine; AMA = Amador; CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus; TUO = Tuolumne

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
1	310890001139	ALP	89	11.39	72.26
1	300264000954	CAL	26	9.54	71.75
1	310890001181	ALP	89	11.81	71.51
1	310044000378	ALP	4	3.78	71.21
1	321080004654	TUO	108	46.54	71.00
1	321080004711	TUO	108	47.11	71.00
1	321080004748	TUO	108	47.48	70.98
1	321080004731	TUO	108	47.31	70.98
1	321080004715	TUO	108	47.15	70.94
1	401400004976	MPA	140	49.76	70.85
1	310880000006	ALP	88	0.06	69.34
1	310040002709	ALP	4	27.09	68.05
1	310044000657	ALP	4	6.57	67.41
1	380040000309	STA	4	3.09	67.25
1	321080004801	TUO	108	48.01	67.25
1	310044000745	ALP	4	7.45	66.70
1	401400004944	MPA	140	49.44	66.69
1	310044000587	ALP	4	5.87	66.21
1	310044000477	ALP	4	4.77	66.11
1	310045200487	ALP	4	4.87	65.99
1	321084005854	TUO	108	58.54	65.94
1	310044000739	ALP	4	7.39	65.89
1	310044000360	ALP	4	3.6	65.81
1	310044000366	ALP	4	3.66	65.81
1	310890000802	ALP	89	8.02	65.62
1	310044000644	ALP	4	6.44	65.61
1	310044000653	ALP	4	6.53	65.55
1	380044000544	STA	4	5.44	64.71
1	321084005805	TUO	108	58.05	64.43
1	310890000788	ALP	89	7.88	64.34
1	321084006220	TUO	108	62.2	64.18
1	321084006194	TUO	108	61.94	64.16
1	321084006049	TUO	108	60.49	64.16
1	321084005850	TUO	108	58.5	64.15
1	321084006030	TUO	108	60.3	64.15
1	321084005845	TUO	108	58.45	64.14
1	321084006190	TUO	108	61.9	64.13
1	321084006097	TUO	108	60.97	64.10
1	380044000668	STA	4	6.68	63.60
1	310884001557	ALP	88	15.57	63.20

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
1	310044000821	ALP	4	8.21	63.12
1	380044000602	STA	4	6.02	63.09
1	320490000058	TUO	49	0.58	62.87
1	310880001737	ALP	88	17.37	62.87
1	320494000508	TUO	49	5.08	62.74
1	310880001665	ALP	88	16.65	62.55
1	300040002964	CAL	4	29.64	62.53
1	401400004392	MPA	140	43.92	62.12
1	310044000421	ALP	4	4.21	61.41
1	380044000511	STA	4	5.11	61.17
1	401400004884	MPA	140	48.84	60.99
1	310040002636	ALP	4	26.36	60.98
1	400490003925	MPA	49	39.25	60.76
1	321084006229	TUO	108	62.29	60.57
1	321084006120	TUO	108	61.2	60.49
1	321084006249	TUO	108	62.49	60.27
1	321084006349	TUO	108	63.49	59.95
1	401324100956	MPA	132	9.56	59.45
1	310040002186	ALP	4	21.86	59.10
1	401400004519	MPA	140	45.19	58.72
1	401400004531	MPA	140	45.31	58.67
1	300264000334	CAL	26	3.34	58.21
1	310884001593	ALP	88	15.93	58.12
1	321084006265	TUO	108	62.65	58.08
1	310044002515	ALP	4	25.15	57.82
1	260884106474	AMA	88	64.74	57.28
1	401400003224	MPA	140	32.24	57.06
1	310884001950	ALP	88	19.5	57.03
1	310880001636	ALP	88	16.36	56.92
1	401400004507	MPA	140	45.07	56.87
1	401400004792	MPA	140	47.92	56.85
1	401400004624	MPA	140	46.24	56.85
1	401400004776	MPA	140	47.76	56.84
1	380044000567	STA	4	5.67	56.84
1	401400004659	MPA	140	46.59	56.84
1	310894101903	ALP	89	19.03	56.46
1	310880001721	ALP	88	17.21	56.33
1	300264000009	CAL	26	0.09	55.82
1	310894101938	ALP	89	19.38	55.65
1	380040000271	STA	4	2.71	54.64

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
2	321084006359	TUO	108	63.59	54.55
2	321084006364	TUO	108	63.64	54.55
2	321084006271	TUO	108	62.71	54.52
2	321084006640	TUO	108	66.4	54.49
2	321084006543	TUO	108	65.43	54.48
2	321084006576	TUO	108	65.76	54.47
2	321084006616	TUO	108	66.16	54.47
2	310044100088	ALP	4	0.88	54.46
2	321084006570	TUO	108	65.7	54.42
2	321084006627	TUO	108	66.27	54.40
2	300044106088	CAL	4	60.88	54.29
2	310044000950	ALP	4	9.5	54.13
2	310044001394	ALP	4	13.94	54.04
2	310040001406	ALP	4	14.06	54.04
2	310894102005	ALP	89	20.05	54.03
2	310044001522	ALP	4	15.22	53.87
2	300260002458	CAL	26	24.58	53.83
2	310884002017	ALP	88	20.17	53.80
2	310894000546	ALP	89	5.46	53.63
2	310884001810	ALP	88	18.1	53.55
2	310884001908	ALP	88	19.08	53.55
2	310890001304	ALP	89	13.04	53.48
2	300044106046	CAL	4	60.46	53.47
2	300044106181	CAL	4	61.81	53.36
2	310884002224	ALP	88	22.24	53.27
2	401400004571	MPA	140	45.71	53.22
2	401400004598	MPA	140	45.98	53.20
2	310044002101	ALP	4	21.01	53.15
2	401400004617	MPA	140	46.17	53.15
2	310884002124	ALP	88	21.24	53.11
2	310044001606	ALP	4	16.06	52.89
2	310044001966	ALP	4	19.66	52.88
2	310044001604	ALP	4	16.04	52.85
2	310894101833	ALP	89	18.33	52.55
2	310894002156	ALP	89	21.56	52.51
2	401400001261	MPA	140	12.61	52.49
2	310044000964	ALP	4	9.64	52.32
2	310040001215	ALP	4	12.15	52.29
2	310044001376	ALP	4	13.76	52.27
2	310044001362	ALP	4	13.62	52.26

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
2	310044001383	ALP	4	13.83	52.24
2	310044001320	ALP	4	13.2	52.12
2	310044001541	ALP	4	15.41	52.09
2	310044001743	ALP	4	17.43	52.09
2	260884005588	AMA	88	55.88	52.04
2	310044100161	ALP	4	1.61	52.04
2	321080003823	TUO	108	38.23	52.01
2	260884005599	AMA	88	55.99	51.94
2	260884005772	AMA	88	57.72	51.80
2	260884005799	AMA	88	57.99	51.72
2	401400004863	MPA	140	48.63	51.67
2	295804001488	SJ	580	14.88	51.50
2	310040001926	ALP	4	19.26	51.10
2	401404001867	MPA	140	18.67	51.09
2	401400001475	MPA	140	14.75	50.74
2	321080004044	TUO	108	40.44	50.73
2	310890002265	ALP	89	22.65	50.50
2	321080004184	TUO	108	41.84	50.29
2	401400001447	MPA	140	14.47	50.27
2	321080004103	TUO	108	41.03	50.25
2	321080003787	TUO	108	37.87	50.25
2	321080003863	TUO	108	38.63	50.25
2	321080003918	TUO	108	39.18	50.25
2	321080004001	TUO	108	40.01	50.25
2	321080003924	TUO	108	39.24	50.23
2	321080003836	TUO	108	38.36	50.23
2	321080004177	TUO	108	41.77	50.17
2	260884106459	AMA	88	64.59	50.08
2	260884106533	AMA	88	65.33	49.90
2	401400001181	MPA	140	11.81	49.56
2	400490003017	MPA	49	30.17	49.55
2	400490004098	MPA	49	40.98	49.38
2	400490004199	MPA	49	41.99	49.28
2	310880002310	ALP	88	23.1	49.25
2	310044001625	ALP	4	16.25	49.17
2	310044001425	ALP	4	14.25	48.68
2	310045201416	ALP	4	14.16	48.64
2	310044001630	ALP	4	16.3	48.62
2	310894001520	ALP	89	15.2	48.50
2	310894001521	ALP	89	15.21	48.50

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
2	401404001747	MPA	140	17.47	48.29
2	310890000629	ALP	89	6.29	48.29
2	401404001666	MPA	140	16.66	48.01
2	310890000492	ALP	89	4.92	47.98
2	310884000314	ALP	88	3.14	47.62
2	260880006716	AMA	88	67.16	47.61
2	401440005007	MPA	144	50.07	47.27
2	300040004159	CAL	4	41.59	47.19
2	310884001145	ALP	88	11.45	46.81
2	310884001132	ALP	88	11.32	46.72
2	300044004404	CAL	4	44.04	46.44
2	320494001306	TUO	49	13.06	46.26
2	321080004242	TUO	108	42.42	46.07
2	310884000173	ALP	88	1.73	45.94
2	310884001122	ALP	88	11.22	45.92
2	300044106368	CAL	4	63.68	45.83
2	401404001602	MPA	140	16.02	45.70
2	400410000438	MPA	41	4.38	45.67
2	400414000214	MPA	41	2.14	45.61
2	310890002296	ALP	89	22.96	45.60
2	260880002137	AMA	88	21.37	45.46
2	401404001657	MPA	140	16.57	45.27
2	300040104704	CAL	4	47.04	45.14
2	300040004735	CAL	4	47.35	45.04
2	310044100010	ALP	4	0.1	45.02
2	300044106343	CAL	4	63.43	44.85
2	300044106361	CAL	4	63.61	44.79
2	321200104670	TUO	120	46.7	44.77
2	380058001590	STA	5	15.9	44.68
2	300040104755	CAL	4	47.55	44.68
2	310884000372	ALP	88	3.72	44.10
2	310884000232	ALP	88	2.32	44.09
2	300260000718	CAL	26	7.18	44.00
2	400414000247	MPA	41	2.47	43.87
2	321080004285	TUO	108	42.85	43.62
2	380054002498	STA	5	24.98	43.60
2	321084100414	TUO	108	4.14	43.53
2	300044003061	CAL	4	30.61	43.04
2	260884001866	AMA	88	18.66	42.96
3	300260000648	CAL	26	6.48	42.62

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
3	321200105497	TUO	120	54.97	42.61
3	400414000032	MPA	41	0.32	42.59
3	400414000022	MPA	41	0.22	42.57
3	321200000950	TUO	120	9.5	42.36
3	321200000892	TUO	120	8.92	42.30
3	321200003980	TUO	120	39.8	42.30
3	310884100675	ALP	88	6.75	42.17
3	300040000863	CAL	4	8.63	42.13
3	310884100609	ALP	88	6.09	42.06
3	300490001090	CAL	49	10.9	41.94
3	260884106287	AMA	88	62.87	41.93
3	380054001473	STA	5	14.73	41.74
3	321080004413	TUO	108	44.13	41.72
3	321080004424	TUO	108	44.24	41.72
3	310884000430	ALP	88	4.3	41.67
3	380054002586	STA	5	25.86	41.56
3	401204004345	MPA	120	43.45	41.54
3	321200104565	TUO	120	45.65	41.52
3	260490001223	AMA	49	12.23	41.46
3	260880000462	AMA	88	4.62	41.41
3	260490001286	AMA	49	12.86	41.40
3	321200105308	TUO	120	53.08	41.36
3	321080004462	TUO	108	44.62	41.23
3	321080004479	TUO	108	44.79	41.21
3	321200004432	TUO	120	44.32	41.21
3	321080004544	TUO	108	45.44	41.14
3	321204003188	TUO	120	31.88	41.08
3	290124002600	SJ	12	26	40.99
3	260880000533	AMA	88	5.33	40.82
3	400414000026	MPA	41	0.26	40.78
3	260490001633	AMA	49	16.33	40.76
3	321200003226	TUO	120	32.26	40.68
3	300044003880	CAL	4	38.8	40.66
3	401204004325	MPA	120	43.25	40.57
3	321200004854	TUO	120	48.54	40.57
3	310884000359	ALP	88	3.59	40.51
3	321084101870	TUO	108	18.7	40.35
3	401204004212	MPA	120	42.12	40.32
3	295804001330	SJ	580	13.3	40.23
3	295804001124	SJ	580	11.24	40.23

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
3	300044106024	CAL	4	60.24	40.19
3	401204004205	MPA	120	42.05	40.16
3	261244000348	AMA	124	3.48	40.12
3	300490102281	CAL	49	22.81	40.00
3	310884001040	ALP	88	10.4	39.98
3	380054002498	STA	5	24.98	39.97
3	260880000836	AMA	88	8.36	39.91
3	300044003838	CAL	4	38.38	39.65
3	300124001193	CAL	12	11.93	39.47
3	300044004910	CAL	4	49.1	39.43
3	300260000559	CAL	26	5.59	39.31
3	300040004375	CAL	4	43.75	39.30
3	300044002703	CAL	4	27.03	39.29
3	300044104813	CAL	4	48.13	39.26
3	300044004916	CAL	4	49.16	39.25
3	310884000915	ALP	88	9.15	39.04
3	310880000761	ALP	88	7.61	39.00
3	321084101898	TUO	108	18.98	39.00
3	300260002880	CAL	26	28.8	38.95
3	310884000807	ALP	88	8.07	38.95
3	380054001492	STA	5	14.92	38.94
3	260490001708	AMA	49	17.08	38.90
3	321204105252	TUO	120	52.52	38.84
3	321204105260	TUO	120	52.6	38.84
3	321252001294	TUO	125	12.94	38.76
3	321204105230	TUO	120	52.3	38.76
3	321205205229	TUO	120	52.29	38.76
3	321204001221	TUO	120	12.21	38.61
3	300044105832	CAL	4	58.32	38.47
3	260884001576	AMA	88	15.76	38.44
3	300044105790	CAL	4	57.9	38.42
3	300044105848	CAL	4	58.48	38.40
3	401204004236	MPA	120	42.36	38.35
3	300260000459	CAL	26	4.59	38.29
3	300044003913	CAL	4	39.13	38.28
3	400490004652	MPA	49	46.52	38.21
3	391524100549	MER	152	5.49	38.15
3	400490004668	MPA	49	46.68	38.08
3	400490004598	MPA	49	45.98	38.06
3	400490004704	MPA	49	47.04	38.02

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
3	321200004456	TUO	120	44.56	38.02
3	321204001473	TUO	120	14.73	38.01
3	260880006838	AMA	88	68.38	38.01
3	300040004047	CAL	4	40.47	37.98
3	300490102552	CAL	49	25.52	37.97
3	321200004522	TUO	120	45.22	37.96
3	321204105104	TUO	120	51.04	37.91
3	321204105090	TUO	120	50.9	37.90
3	321204105084	TUO	120	50.84	37.90
3	321204105152	TUO	120	51.52	37.89
3	321204105046	TUO	120	50.46	37.89
3	300120001288	CAL	12	12.88	37.88
3	321204105179	TUO	120	51.79	37.88
3	321204105150	TUO	120	51.5	37.87
3	260880000206	AMA	88	2.06	37.86
3	321204105093	TUO	120	50.93	37.85
3	321204105052	TUO	120	50.52	37.85
3	321200004384	TUO	120	43.84	37.81
3	260490000022	AMA	49	0.22	37.79
3	260494000112	AMA	49	1.12	37.79
3	260880000350	AMA	88	3.5	37.77
3	300044005185	CAL	4	51.85	37.67
3	321200004424	TUO	120	44.24	37.67
3	260490000144	AMA	49	1.44	37.66
3	321204001208	TUO	120	12.08	37.66
3	260884002077	AMA	88	20.77	37.66
3	300044002316	CAL	4	23.16	37.47
3	260880000082	AMA	88	0.82	37.44
3	300044005240	CAL	4	52.4	37.41
3	260880102392	AMA	88	23.92	37.32
3	310880100737	ALP	88	7.37	37.31
3	260490000100	AMA	49	1	37.30
3	290884002409	SJ	88	24.09	37.15
3	261240000615	AMA	124	6.15	37.02
3	321080003585	TUO	108	35.85	37.01
3	321080003518	TUO	108	35.18	37.01
3	321080003537	TUO	108	35.37	37.00
4	321080003642	TUO	108	36.42	36.96
4	260884001635	AMA	88	16.35	36.95
4	260490000416	AMA	49	4.16	36.94

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
4	295804000366	SJ	580	3.66	36.93
4	300044105498	CAL	4	54.98	36.87
4	380054001545	STA	5	15.45	36.85
4	380054001545	STA	5	15.45	36.80
4	260494001811	AMA	49	18.11	36.78
4	260494001759	AMA	49	17.59	36.77
4	321200000772	TUO	120	7.72	36.74
4	321200105527	TUO	120	55.27	36.71
4	300490001003	CAL	49	10.03	36.70
4	320494002150	TUO	49	21.5	36.64
4	261040000941	AMA	104	9.41	36.62
4	260260000106	AMA	26	1.06	36.61
4	321200000725	TUO	120	7.25	36.59
4	260884000909	AMA	88	9.09	36.47
4	260260000050	AMA	26	0.5	36.46
4	260260000056	AMA	26	0.56	36.46
4	300490001163	CAL	49	11.63	36.46
4	300044105555	CAL	4	55.55	36.38
4	300044105565	CAL	4	55.65	36.38
4	300044105572	CAL	4	55.72	36.38
4	391404004900	MER	140	49	36.32
4	380054001473	STA	5	14.73	36.29
4	321084101927	TUO	108	19.27	36.22
4	300120000832	CAL	12	8.32	36.17
4	260880006820	AMA	88	68.2	36.11
4	321080004490	TUO	108	44.9	36.10
4	321204004042	TUO	120	40.42	36.09
4	290884002195	SJ	88	21.95	36.08
4	260884000715	AMA	88	7.15	36.03
4	300044003826	CAL	4	38.26	36.03
4	260884000395	AMA	88	3.95	36.00
4	300124001116	CAL	12	11.16	35.98
4	401404001981	MPA	140	19.81	35.94
4	260490001380	AMA	49	13.8	35.92
4	260880102687	AMA	88	26.87	35.88
4	380054001378	STA	5	13.78	35.86
4	401404000906	MPA	140	9.06	35.86
4	260880000467	AMA	88	4.67	35.79
4	300124001061	CAL	12	10.61	35.74
4	400490004267	MPA	49	42.67	35.74

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
4	290124002400	SJ	12	24	35.73
4	260884000614	AMA	88	6.14	35.73
4	391525200743	MER	152	7.43	35.68
4	300490002129	CAL	49	21.29	35.67
4	391524100768	MER	152	7.68	35.66
4	320490101018	TUO	49	10.18	35.60
4	391524100623	MER	152	6.23	35.54
4	380054002208	STA	5	22.08	35.52
4	321204002949	TUO	120	29.49	35.51
4	321202100534	TUO	120	5.34	35.42
4	321204100569	TUO	120	5.69	35.35
4	321200000807	TUO	120	8.07	35.34
4	300490102315	CAL	49	23.15	35.31
4	300264002674	CAL	26	26.74	35.23
4	321084101893	TUO	108	18.93	35.21
4	321084101297	TUO	108	12.97	35.16
4	300044003806	CAL	4	38.06	35.13
4	260881202865	AMA	88	28.65	35.01
4	295804000916	SJ	580	9.16	34.99
4	300040003301	CAL	4	33.01	34.96
4	401204004269	MPA	120	42.69	34.94
4	300044105884	CAL	4	58.84	34.88
4	300044105867	CAL	4	58.67	34.78
4	321200103400	TUO	120	34	34.76
4	300260000503	CAL	26	5.03	34.75
4	300044106011	CAL	4	60.11	34.71
4	300044106012	CAL	4	60.12	34.71
4	380054001373	STA	5	13.73	34.60
4	400490004673	MPA	49	46.73	34.59
4	261044000482	AMA	104	4.82	34.59
4	401404002464	MPA	140	24.64	34.57
4	300490102410	CAL	49	24.1	34.57
4	400490004696	MPA	49	46.96	34.55
4	261240000780	AMA	124	7.8	34.54
4	401404002527	MPA	140	25.27	34.54
4	400490004564	MPA	49	45.64	34.54
4	390054000654	MER	5	6.54	34.53
4	381200001421	STA	120	14.21	34.53
4	400490004578	MPA	49	45.78	34.50
4	401404002510	MPA	140	25.1	34.47

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
4	380054001175	STA	5	11.75	34.45
4	260880000830	AMA	88	8.3	34.44
4	400490004687	MPA	49	46.87	34.42
4	300124000128	CAL	12	1.28	34.42
4	300124000112	CAL	12	1.12	34.30
4	321204100536	TUO	120	5.36	34.24
4	261040000181	AMA	104	1.81	34.16
4	321204100565	TUO	120	5.65	34.16
4	261044000447	AMA	104	4.47	34.10
4	300044102220	CAL	4	22.2	34.09
4	321200003211	TUO	120	32.11	33.96
4	261040000080	AMA	104	0.8	33.94
4	381200001675	STA	120	16.75	33.89
4	300040002504	CAL	4	25.04	33.87
4	260884002020	AMA	88	20.2	33.87
4	300044002291	CAL	4	22.91	33.86
4	390054001597	MER	5	15.97	33.75
4	261240000283	AMA	124	2.83	33.61
4	400490004310	MPA	49	43.1	33.56
4	300044000978	CAL	4	9.78	33.53
4	390054001597	MER	5	15.97	33.51
4	400490004315	MPA	49	43.15	33.50
4	300124000400	CAL	12	4	33.47
4	300124000238	CAL	12	2.38	33.38
4	260880000178	AMA	88	1.78	33.31
4	321202100096	TUO	120	0.96	33.24
4	390054001017	MER	5	10.17	33.06
4	390054001017	MER	5	10.17	33.06
4	390054000372	MER	5	3.72	33.04
4	320490002158	TUO	49	21.58	33.04
4	321200100253	TUO	120	2.53	32.88
4	290880002370	SJ	88	23.7	32.83
4	400490002139	MPA	49	21.39	32.80
4	400490004722	MPA	49	47.22	32.79
4	320494002163	TUO	49	21.63	32.78
5	400490002188	MPA	49	21.88	32.71
5	261240000965	AMA	124	9.65	32.68
5	321202100260	TUO	120	2.6	32.65
5	260164000786	AMA	16	7.86	32.58
5	321204100001	TUO	120	0.01	32.55
		1			

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
5	401324101125	MPA	132	11.25	32.55
5	260884001302	AMA	88	13.02	32.52
5	321204100001	TUO	120	0.01	32.44
5	261240000671	AMA	124	6.71	32.43
5	260884000969	AMA	88	9.69	32.37
5	400490004365	MPA	49	43.65	32.29
5	400490004373	MPA	49	43.73	32.29
5	295804000530	SJ	580	5.3	32.21
5	400490004339	MPA	49	43.39	32.20
5	321200001031	TUO	120	10.31	32.12
5	321084101927	TUO	108	19.27	32.02
5	391520001147	MER	152	11.47	32.02
5	381321205057	STA	132	50.57	31.92
5	260164000849	AMA	16	8.49	31.85
5	390054001674	MER	5	16.74	31.74
5	391520001147	MER	152	11.47	31.72
5	300124000854	CAL	12	8.54	31.71
5	401324100998	MPA	132	9.98	31.70
5	260164000890	AMA	16	8.9	31.66
5	390054001881	MER	5	18.81	31.61
5	260164100621	AMA	16	6.21	31.52
5	401324100894	MPA	132	8.94	31.50
5	260164100530	AMA	16	5.3	31.46
5	401324101220	MPA	132	12.2	31.44
5	321209102454	TUO	120	24.54	31.37
5	295804000985	SJ	580	9.85	31.37
5	300260000592	CAL	26	5.92	31.34
5	260164100513	AMA	16	5.13	31.26
5	300260000746	CAL	26	7.46	31.23
5	260164100501	AMA	16	5.01	31.19
5	260490001667	AMA	49	16.67	31.08
5	321200003219	TUO	120	32.19	31.04
5	300494001617	CAL	49	16.17	31.01
5	300044102142	CAL	4	21.42	30.94
5	260164100684	AMA	16	6.84	30.84
5	260164100676	AMA	16	6.76	30.80
5	401324100782	MPA	132	7.82	30.61
5	261040000055	AMA	104	0.55	30.61
5	321204100600	TUO	120	6	30.61
5	391404004578	MER	140	45.78	30.54

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
5	260160100148	AMA	16	1.48	30.53
5	26104000000	AMA	104	0	30.51
5	380054000142	STA	5	1.42	30.50
5	300124000734	CAL	12	7.34	30.50
5	260164100441	AMA	16	4.41	30.46
5	260164100413	AMA	16	4.13	30.43
5	260164100702	AMA	16	7.02	30.28
5	300040102293	CAL	4	22.93	30.28
5	380054001336	STA	5	13.36	30.28
5	321200100643	TUO	120	6.43	30.11
5	300260002797	CAL	26	27.97	30.03
5	400494004750	MPA	49	47.5	30.01
5	401404002429	MPA	140	24.29	30.00
5	300044000750	CAL	4	7.5	29.86
5	401404002373	MPA	140	23.73	29.85
5	391520101195	MER	152	11.95	29.82
5	381324004866	STA	132	48.66	29.75
5	300044000692	CAL	4	6.92	29.74
5	390054000977	MER	5	9.77	29.58
5	300264000278	CAL	26	2.78	29.44
5	300044000779	CAL	4	7.79	29.40
5	390054000654	MER	5	6.54	29.37
5	261240000522	AMA	124	5.22	29.36
5	300044000635	CAL	4	6.35	29.31
5	261240000453	AMA	124	4.53	29.30
5	400490001916	MPA	49	19.16	29.18
5	300044000716	CAL	4	7.16	29.15
5	290050000632	SJ	5	6.32	28.76
5	261240000911	AMA	124	9.11	28.73
5	401404000053	MPA	140	0.53	28.70
5	300264000058	CAL	26	0.58	28.67
5	300260003287	CAL	26	32.87	28.56
5	321204100095	TUO	120	0.95	28.50
5	380054000442	STA	5	4.42	28.49
5	380054000442	STA	5	4.42	28.32
5	401404000489	MPA	140	4.89	27.97
5	321204002763	TUO	120	27.63	27.76
5	290264001949	SJ	26	19.49	27.59
5	290260001872	SJ	26	18.72	27.57
5	321201102476	TUO	120	24.76	27.30

Priority	Culvert System Number	County ³⁰	Route	Postmile	Cross-Hazard Prioritization Score
5	401400000142	MPA	140	1.42	27.24
5	401404001099	MPA	140	10.99	27.09
5	401404001060	MPA	140	10.6	27.05
5	401404000413	MPA	140	4.13	26.98
5	380054000027	STA	5	0.27	26.87
5	380054000027	STA	5	0.27	26.70
5	380054000078	STA	5	0.78	26.60
5	401320100263	MPA	132	2.63	25.49
5	290044003763	SJ	4	37.63	24.89
5	390054001072	MER	5	10.72	24.47
5	390054001072	MER	5	10.72	24.47
5	401400000309	MPA	140	3.09	23.45
5	391654002280	MER	165	22.8	23.14
5	290044003669	SJ	4	36.69	22.25
5	391654002112	MER	165	21.12	22.12
5	391400000974	MER	140	9.74	21.67
5	380054000720	STA	5	7.2	19.72
5	401404000251	MPA	140	2.51	19.15
5	390054001509	MER	5	15.09	18.98
5	380054000174	STA	5	1.74	15.97
5	391400000910	MER	140	9.1	14.69
5	295800001263	SJ	580	12.63	14.03
5	390590002760	MER	59	27.6	12.93
5	390054001565	MER	5	15.65	12.74
5	380054000759	STA	5	7.59	11.69
5	290054000698	SJ	5	6.98	11.55
5	390054000215	MER	5	2.15	10.60
5	390054000215 MER		5	2.15	10.48
5	391522002504 MER 152 25.04		25.04	9.33	
5	390990000513 MER 99		5.13	9.14	
5	390590002215	MER	59	22.15	6.15
5	390590000129	MER	59	1.29	0.00

TABLE 11: PRIORITIZATION OF ROADWAYS FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
1	12	Р	SJ 12 0.003 / SJ 12 R4.66	66.94
1	12	Р	SJ 12 10.178 / SJ 12 10.213	66.94
1	12	Р	SJ 12 10.455 / SJ 12 10.821	66.94
1	12	Р	SJ 12 M4.98 / SJ 12 10.156	66.94
1	12	Р	SJ 12 10.454 / SJ 12 10.659	53.66
1	12	Р	SJ 12 6.05 / SJ 12 6.133	53.66
1	12	Р	SJ 12 8.724 / SJ 12 8.926	53.66
1	12	Р	SJ 12 9.575 / SJ 12 10.211	53.66
1	4	Р	CC 4 48.392 / SJ 4 12.889	43.18
1	4	Р	SJ 4 12.966 / SJ 4 15.905	43.18
1	4	Р	SJ 4 R15.318 / SJ 4 R16.033	43.18
1	4	Р	SJ 4 R16.069 / SJ 4 R16.069	43.18
1	4	Р	SJ 4 10.186 / SJ 4 10.517	42.42
1	4	Р	SJ 4 10.692 / SJ 4 11.746	42.42
1	4	Р	SJ 4 11.789 / SJ 4 11.955	42.42
1	4	Р	SJ 4 12.216 / SJ 4 12.889	42.42
1	4	Р	SJ 4 14.471 / SJ 4 15.906	42.42
1	4	Р	SJ 4 R15.327 / SJ 4 R16.008	42.42
1	4	Р	SJ 4 R16.044 / SJ 4 R16.044	42.42
1	4	Р	SJ 4 R16.093 / SJ 4 R16.266	42.42
1	4	Р	SJ 4 R6.006 / SJ 4 R6.119	42.42
1	4	Р	SJ 4 R8.519 / SJ 4 R8.722	42.42
1	4	Р	SJ 4 T13.935 / SJ 4 T14.126	42.42
1	5	Р	MER 5 0.008 / MER 5 6.286	38.61
1	5	Р	MER 5 6.458 / STA 5 0.009	38.61
1	5	Р	SJ 5 2.461 / SJ 5 R21.719	38.61
1	5	Р	SJ 5 25.368 / SJ 5 26.155	38.61
1	5	Р	SJ 5 26.198 / SJ 5 26.198	38.61
1	5	Р	SJ 5 26.204 / SJ 5 26.571	38.61
1	5	Р	SJ 5 26.966 / SJ 5 27.947	38.61
1	5	Р	SJ 5 28.295 / SJ 5 29.57	38.61
1	5	Р	SJ 5 29.646 / SJ 5 34.269	38.61
1	5	Р	SJ 5 34.293 / SJ 5 39.292	38.61
1	5	Р	SJ 5 39.593 / SJ 5 41.931	38.61

³¹ Caltrans' alignment codes designate the carriageway on divided roadways: "P" always represents northbound or eastbound carriageways whereas "S" always represents southbound or westbound carriageways. Undivided roadways are always indicated with a "P".

 ³² ALP = Alpine; AMA = Amador; CAL = Calaveras; MER = Merced; MPA = Mariposa; SJ = San Joaquin; STA = Stanislaus; TUO = Tuolumne
 ³³ The average of the cross-hazard prioritization scores amongst all the abutting small segments on the same route sharing a common priority level that were aggregated to form the longer segments listed in this table.

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
1	5	Р	SJ 5 44.439 / SAC 5 0.018	38.61
1	5	Р	SJ 5 R22.525 / SJ 5 25.36	38.61
1	5	Р	STA 5 0.879 / STA 5 9.456	38.61
1	5	Р	STA 5 23.244 / STA 5 28.011	38.61
1	5	Р	MER 5 0.009 / MER 5 6.069	38.32
1	5	Р	MER 5 6.443 / STA 5 0.003	38.32
1	5	Р	SJ 5 2.461 / SJ 5 R21.698	38.32
1	5	Р	SJ 5 25.652 / SJ 5 26.132	38.32
1	5	Р	SJ 5 26.163 / SJ 5 26.165	38.32
1	5	Р	SJ 5 26.172 / SJ 5 26.172	38.32
1	5	Р	SJ 5 26.213 / SJ 5 26.542	38.32
1	5	Р	SJ 5 26.971 / SJ 5 28.29	38.32
1	5	Р	SJ 5 28.324 / SJ 5 29.569	38.32
1	5	Р	SJ 5 29.647 / SJ 5 34.261	38.32
1	5	Р	SJ 5 34.285 / SJ 5 39.14	38.32
1	5	Р	SJ 5 39.583 / SJ 5 42.668	38.32
1	5	Р	SJ 5 44.423 / SJ 5 49.818	38.32
1	5	Р	SJ 5 R22.775 / SJ 5 25.365	38.32
1	5	Р	STA 5 0.884 / STA 5 9.449	38.32
1	5	Р	STA 5 23.002 / STA 5 0.159	38.32
1	205	Р	ALA 205 L0.005 / SJ 205 R13.299	36.97
1	205	Р	ALA 205 L0.005 / SJ 205 R12.867	35.66
1	120	Р	SJ 120 6.244 / SJ 120 6.197	29.30
1	120	Р	SJ 120 R0.505 / SJ 120 T7.131	29.30
1	99	Р	MER 99 0 / MER 99 R11.71	28.67
1	99	Р	MER 99 13.094 / MER 99 27.35	28.67
1	99	Р	SJ 99 5.309 / SJ 99 17.213	28.67
1	99	Р	MER 99 0.004 / MER 99 R11.726	28.51
1	99	Р	MER 99 13.11 / MER 99 27.485	28.51
1	99	Р	SJ 99 5.582 / SJ 99 17.213	28.51
1	580	S	SJ 580 15.341R / SJ 580 8.344	28.46
1	580	S	SJ 580 7.972 / SJ 580 1.398	28.46
1	120	Р	SJ 120 6.197 / SJ 120 6.245	27.96
1	120	Р	SJ 120 R0.493 / SJ 120 T7.132	27.96
1	120	Р	STA 120 11.049 / STA 120 17.052	27.96
1	120	Р	STA 120 6.901 / STA 120 10.118	27.96
1	580	Р	ALA 580 0.092R / SJ 580 8.299	27.85
1	580	Р	SJ 580 8.153 / SJ 580 1.413	27.85
1	59	Р	MER 59 14.782 / MER 59 14.805	27.27
1	59	P	MER 59 15.033 / MER 59 15.157	27.27
-		-		_ <i>··</i> _·

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
1	59	Р	MER 59 15.347 / MER 59 15.37	27.27
1	152	Р	MER 152 11.277 / MER 152 13.553	26.64
1	152	Р	MER 152 13.835 / MER 152 14.713	26.64
1	152	Р	MER 152 R9.799 / MER 152 R10.931	26.64
1	152	Р	MER 152 11.281 / MER 152 13.531	26.60
1	152	Р	MER 152 13.833 / MER 152 14.709	26.60
1	152	Р	MER 152 R7.909 / MER 152 R10.928	26.60
1	132	Р	SJ 132 3.226 / SJ 132 4.246	26.34
1	132	Р	SJ 132 L0.582 / SJ 132 0.245	26.34
1	132	Р	SJ 132 3.226 / SJ 132 6.702	25.99
1	132	Р	SJ 132 7.096 / STA 132 1.377	25.99
1	132	Р	SJ 132 L0.094 / SJ 132 0.245	25.99
1	132	Р	STA 132 1.687 / STA 132 4.409	25.99
1	132	Р	STA 132 4.534 / STA 132 6.126	25.99
1	132	Р	STA 132 6.602 / STA 132 8.328	25.99
1	140	Р	MER 140 35.548 / MER 140 35.75	25.72
1	140	Р	MER 140 35.874 / MER 140 35.947	25.72
1	49	Р	AMA 49 4.805 / AMA 49 5.714	25.63
1	49	Р	AMA 49 5.991 / AMA 49 6.047	25.63
1	49	Р	AMA 49 R7.065 / AMA 49 R8.434	25.63
1	49	Р	AMA 49 R8.734 / AMA 49 14.661	25.63
1	49	Р	TUO 49 15.138 / TUO 49 15.697	25.63
1	49	Р	TUO 49 16.017 / TUO 49 17.002	25.63
1	49	Р	TUO 49 17.937 / TUO 49 20.616	25.63
1	49	Р	TUO 49 R10.6 / TUO 49 14.327	25.63
1	108	Р	TUO 108 R0.04 / TUO 108 R4.568	25.58
1	165	Р	MER 165 8.137 / MER 165 8.81	25.51
1	88	Р	AMA 88 12.679 / AMA 88 12.775	25.45
1	88	Р	AMA 88 14.902 / AMA 88 15.591	25.45
1	88	Р	SJ 88 14.775 / SJ 88 16.275	25.45
2	165	Р	MER 165 26.872 / MER 165 27.88	25.02
2	165	Р	MER 165 7.232 / MER 165 8.137	25.02
2	165	Р	MER 165 8.81 / MER 165 12.065	25.02
2	5	Р	MER 5 6.286 / MER 5 6.458	24.85
2	5	Р	SJ 5 27.947 / SJ 5 28.226	24.85
2	5	Р	SJ 5 41.931 / SJ 5 44.439	24.85
2	5	Р	STA 5 0.009 / STA 5 0.879	24.85
2	5	Р	MER 5 6.069 / MER 5 6.443	24.81
2	5	Р	SJ 5 42.668 / SJ 5 44.423	24.81
2	5	Р	STA 5 0.003 / STA 5 0.884	24.81

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
2	108	Р	TUO 108 L0.002 / TUO 108 L2.808	24.78
2	108	Р	TUO 108 R0 / TUO 108 R0.04	24.78
2	108	Р	TUO 108 R4.568 / TUO 108 R4.843	24.78
2	152	Р	MER 152 13.531 / MER 152 13.833	24.75
2	152	Р	MER 152 14.709 / MAD 152 R0	24.75
2	152	Р	MER 152 13.553 / MER 152 13.835	24.74
2	152	Р	MER 152 14.713 / MAD 152 R0.026	24.74
2	88	Р	AMA 88 12.775 / AMA 88 14.25	24.73
2	88	Р	AMA 88 14.292 / AMA 88 14.902	24.73
2	88	Р	AMA 88 15.591 / AMA 88 19.32	24.73
2	88	Р	SJ 88 16.275 / AMA 88 12.679	24.73
2	16	Р	SAC 16 R23.95 / AMA 16 9.372	24.40
2	140	Р	MER 140 31.51 / MER 140 35.548	24.39
2	140	Р	MER 140 35.75 / MER 140 35.78	24.39
2	140	Р	MER 140 35.79 / MER 140 35.874	24.39
2	140	Р	MER 140 35.947 / MER 140 43.672	24.39
2	140	Р	MER 140 4.194 / MER 140 4.519	24.39
2	140	Р	MER 140 4.596 / MER 140 29.47	24.39
2	140	Р	MER 140 43.759 / MPA 140 1.449	24.39
2	140	Р	MPA 140 8.399 / MPA 140 10.237	24.39
2	99	Р	MER 99 R11.71 / MER 99 13.094	24.33
2	99	Р	SJ 99 1.708 / SJ 99 2.38	24.33
2	99	Р	STA 99 R17.974 / STA 99 M18.752	24.33
2	99	Р	STA 99 R20.216 / STA 99 R20.563	24.33
2	99	Р	STA 99 R22.552 / SJ 99 0.558	24.33
2	99	Р	MER 99 R11.726 / MER 99 13.11	24.32
2	99	Р	SJ 99 1.71 / SJ 99 2.376	24.32
2	99	Р	STA 99 R17.989 / STA 99 M18.518	24.32
2	99	Р	STA 99 R22.555 / SJ 99 0.885	24.32
2	12	Р	CAL 12 9.928 / CAL 12 10.404	24.25
2	12	Р	SJ 12 23.168 / SJ 12 24.41	24.25
2	33	Р	MER 33 27.111 / MER 33 28.695	24.19
2	33	Р	MER 33 29.73 / STA 33 1.264	24.19
2	33	Р	MER 33 R13.597 / MER 33 16.646	24.19
2	33	Р	MER 33 R5.575 / MER 33 L5.678	24.19
2	33	Р	SJ 33 0.16 / SJ 33 0.962	24.19
2	4	Р	STA 4 5.718 / CAL 4 R21.447	24.17
2	49	Р	AMA 49 14.661 / AMA 49 17.22	24.15
2	49	Р	AMA 49 3.891 / AMA 49 4.805	24.15
2	49	Р	AMA 49 5.714 / AMA 49 5.992	24.15

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
2	49	Р	AMA 49 6.047 / AMA 49 R7.065	24.15
2	49	Р	AMA 49 R8.434 / AMA 49 R8.734	24.15
2	49	Р	CAL 49 18.788 / CAL 49 20.465	24.15
2	49	Р	CAL 49 27.612 / AMA 49 3.634	24.15
2	49	Р	CAL 49 8.167 / CAL 49 18.679	24.15
2	49	Р	TUO 49 14.327 / TUO 49 15.138	24.15
2	49	Р	TUO 49 15.697 / TUO 49 16.017	24.15
2	49	Р	TUO 49 17.002 / TUO 49 17.937	24.15
2	49	Р	TUO 49 20.616 / CAL 49 7.966	24.15
2	49	Р	TUO 49 R10.128 / TUO 49 R10.6	24.15
2	49	Р	AMA 49 2.728 / AMA 49 3.62	24.10
2	49	Р	AMA 49 3.821 / AMA 49 4.805	24.10
2	49	Р	AMA 49 5.714 / AMA 49 5.989	24.10
2	49	Р	AMA 49 6.047 / AMA 49 R7.065	24.10
2	49	Р	CAL 49 18.884 / CAL 49 19.808	24.10
2	49	Р	CAL 49 8.066 / CAL 49 9.215	24.10
2	49	Р	TUO 49 15.138 / TUO 49 14.327	24.10
2	49	Р	TUO 49 16.017 / TUO 49 15.697	24.10
2	49	Р	TUO 49 17.733 / TUO 49 17.002	24.10
2	132	Р	SJ 132 0.245 / SJ 132 3.183	24.09
2	132	Р	SJ 132 6.702 / SJ 132 7.096	24.09
2	132	Р	STA 132 1.377 / STA 132 1.687	24.09
2	132	Р	STA 132 4.409 / STA 132 4.534	24.09
2	132	Р	STA 132 6.126 / STA 132 6.602	24.09
2	132	Р	SJ 132 0.245 / SJ 132 3.18	24.09
2	132	Р	SJ 132 6.702 / SJ 132 7.096	24.09
2	132	Р	STA 132 1.377 / STA 132 1.687	24.09
2	132	Р	STA 132 4.409 / STA 132 4.534	24.09
2	132	Р	STA 132 6.126 / STA 132 6.602	24.09
2	120	Р	SJ 120 6.245 / SJ 120 6.585	23.98
2	120	Р	STA 120 10.118 / STA 120 11.049	23.98
2	120	Р	STA 120 17.052 / TUO 120 R23.9	23.98
2	120	Р	TUO 120 50.084 / TUO 120 R55.552	23.98
2	59	Р	MER 59 12.085 / MER 59 14.77	23.93
2	59	Р	MER 59 14.805 / MER 59 15.033	23.93
2	59	Р	MER 59 15.157 / MER 59 15.347	23.93
2	59	Р	MER 59 15.37 / MER 59 16.109	23.93
2	59	Р	MER 59 R0 / MER 59 R0.216	23.93
2	88	Р	AMA 88 13.495 / AMA 88 13.912	23.87
2	88	P	AMA 88 14.123 / AMA 88 14.249	23.87

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
2	88	Р	AMA 88 3.307 / AMA 88 3.748	23.87
2	88	Р	AMA 88 5.092 / AMA 88 5.32	23.87
2	88	Р	SJ 88 17.505 / SJ 88 18.534	23.87
2	140	Р	MER 140 36.482 / MER 140 36.647	23.79
2	140	Р	MER 140 4.519 / MER 140 4.755	23.79
2	140	Р	MER 140 43.7 / MER 140 44.066	23.79
2	120	Р	SJ 120 6.44 / SJ 120 6.244	23.74
2	120	Р	STA 120 10.118 / STA 120 11.049	23.74
2	120	Р	STA 120 17.973 / STA 120 6.957	23.74
2	33	Р	MER 33 R16.069 / MER 33 R16.421	23.69
2	33	Р	MER 33 R16.613 / MER 33 16.656	23.69
2	59	Р	MER 59 13.622 / MER 59 14.77	23.64
2	59	Р	MER 59 14.98 / MER 59 15.033	23.64
2	59	Р	MER 59 15.157 / MER 59 15.347	23.64
2	59	Р	MER 59 15.854 / MER 59 15.95	23.64
2	26	Р	CAL 26 17.91 / CAL 26 18.143	23.64
2	26	Р	CAL 26 7.727 / CAL 26 10.302	23.64
2	104	Р	AMA 104 8.386 / AMA 104 9.888	23.59
2	104	Р	AMA 104 R6.551 / AMA 104 R8.201	23.59
3	33	Р	MER 33 16.646 / MER 33 26.464	23.26
3	33	Р	MER 33 28.695 / MER 33 29.73	23.26
3	33	Р	MER 33 L0 / MER 33 R5.575	23.26
3	33	Р	SJ 33 0.962 / SJ 33 5.001	23.26
3	33	Р	STA 33 1.264 / STA 33 6.468	23.26
3	33	Р	STA 33 15.196 / STA 33 18.9	23.26
3	33	Р	STA 33 19.92 / SJ 33 0.16	23.26
3	104	Р	AMA 104 0 / AMA 104 R6.551	23.25
3	104	Р	AMA 104 9.888 / AMA 104 10.072	23.25
3	49	Р	AMA 49 3.62 / AMA 49 3.821	23.25
3	49	Р	CAL 49 18.679 / CAL 49 18.884	23.25
3	49	Р	CAL 49 7.966 / CAL 49 8.066	23.25
3	12	Р	CAL 12 10.404 / CAL 12 18.201	23.22
3	12	Р	SJ 12 24.41 / CAL 12 9.928	23.22
3	165	Р	MER 165 12.065 / MER 165 26.872	23.22
3	165	Р	MER 165 27.88 / MER 165 31.868	23.22
3	165	Р	MER 165 L0 / MER 165 7.232	23.22
3	49	Р	AMA 49 17.22 / AMA 49 22.11	23.22
3	49	Р	AMA 49 3.634 / AMA 49 3.891	23.22
3	49	Р	CAL 49 18.679 / CAL 49 18.788	23.22
3	49	Р	CAL 49 20.465 / CAL 49 27.612	23.22

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
3	49	Р	CAL 49 7.966 / CAL 49 8.167	23.22
3	49	Р	MPA 49 43.308 / TUO 49 R6.468	23.22
3	49	Р	TUO 49 R8.779 / TUO 49 R10.128	23.22
3	59	Р	MAD 59 L0.157 / MAD 59 L0.159	23.20
3	59	Р	MER 59 16.109 / MER 59 33.71	23.20
3	59	Р	MER 59 L14.416R / MER 59 14.805	23.20
3	59	Р	MER 59 R0.216 / MER 59 12.085	23.20
3	33	Р	MER 33 16.656 / MER 33 16.956	23.17
3	33	Р	SJ 33 4.491 / SJ 33 5.001	23.17
3	124	Р	AMA 124 0 / AMA 124 2.291	23.12
3	124	Р	AMA 124 R2.291 / AMA 124 R10.335	23.12
3	140	Р	MER 140 43.672 / MER 140 43.7	23.11
3	140	Р	MPA 140 1.449 / MPA 140 2.528	23.11
3	140	Р	MER 140 0 / MER 140 4.194	23.10
3	140	Р	MER 140 29.47 / MER 140 31.51	23.10
3	140	Р	MER 140 4.519 / MER 140 4.596	23.10
3	140	Р	MER 140 43.672 / MER 140 43.759	23.10
3	140	Р	MPA 140 1.449 / MPA 140 8.399	23.10
3	26	Р	CAL 26 10.435 / CAL 26 17.91	23.08
3	26	Р	CAL 26 18.143 / CAL 26 24.78	23.08
3	26	Р	SJ 26 11.376 / CAL 26 7.727	23.08
3	26	Р	CAL 26 7.418 / CAL 26 7.727	23.07
3	59	Р	MER 59 16.991 / MER 59 18.258	23.02
3	59	Р	MER 59 22.921 / MER 59 23.301	23.02
3	59	Р	MER 59 L14.423R / MER 59 14.782	23.02
3	132	Р	SJ 132 3.183 / SJ 132 3.226	22.87
3	132	Р	STA 132 33.257 / STA 132 33.38	22.87
3	132	Р	STA 132 35.913 / STA 132 36.056	22.87
3	132	Р	STA 132 45.74 / STA 132 45.887	22.87
3	132	Р	STA 132 R43.959 / STA 132 R44.115	22.87
3	132	Р	TUO 132 3.951 / TUO 132 4.086	22.87
3	132	Р	TUO 132 7.041 / TUO 132 7.122	22.87
3	132	Р	TUO 132 R5.67 / TUO 132 R5.771	22.87
3	132	Р	SJ 132 3.18 / SJ 132 3.226	22.86
3	132	Р	STA 132 R31.683 / MPA 132 18.746	22.86
3	4	Р	CAL 4 R21.447 / CAL 4 28.75	21.68
3	4	Р	SJ 4 12.889 / SJ 4 12.966	21.68
3	4	Р	SJ 4 34.143 / STA 4 5.718	21.68
3	4	Р	SJ 4 R16.079 / SJ 4 R16.267	21.68
3	4	Р	SJ 4 R16.995 / SJ 4 R19.294	21.68

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
3	5	Р	SJ 5 25.365 / SJ 5 25.652	19.46
3	5	Р	SJ 5 39.14 / SJ 5 39.57	19.46
3	5	Р	SJ 5 R21.698 / SJ 5 R22.775	19.46
3	99	Р	MER 99 27.35 / MER 99 R30.188	19.28
3	99	Р	MER 99 R35.542 / STA 99 R0.523	19.28
3	99	Р	SJ 99 0.558 / SJ 99 1.708	19.28
3	99	Р	SJ 99 17.213 / SJ 99 18.955	19.28
3	99	Р	SJ 99 19.284 / SJ 99 27.401	19.28
3	99	Р	SJ 99 2.38 / SJ 99 5.309	19.28
3	99	Р	SJ 99 28.479 / SJ 99 31.579	19.28
3	99	Р	SJ 99 32.602 / SJ 99 38.783	19.28
3	99	Р	STA 99 M18.752 / STA 99 R20.216	19.28
3	99	Р	STA 99 R1.644 / STA 99 R17.974	19.28
3	99	Р	STA 99 R20.563 / STA 99 R22.552	19.28
3	99	Р	MER 99 27.485 / MER 99 R30.382	19.27
3	99	Р	MER 99 R35.565 / STA 99 R0.518	19.27
3	99	Р	SJ 99 0.885 / SJ 99 1.71	19.27
3	99	Р	SJ 99 17.213 / SJ 99 18.88	19.27
3	99	Р	SJ 99 19.287 / SJ 99 27.5	19.27
3	99	Р	SJ 99 2.376 / SJ 99 5.582	19.27
3	99	Р	SJ 99 28.479 / SJ 99 31.58	19.27
3	99	Р	SJ 99 32.573 / SJ 99 38.779	19.27
3	99	Р	STA 99 M18.518 / STA 99 R22.555	19.27
3	99	Р	STA 99 R1.639 / STA 99 R17.989	19.27
3	4	Р	SJ 4 12.889 / SJ 4 12.966	18.69
3	4	Р	SJ 4 R16.994 / SJ 4 R19.303	18.69
3	88	Р	SJ 88 0 / SJ 88 0.157	18.35
3	219	Р	STA 219 0.076 / STA 219 0.152	18.05
3	219	Р	STA 219 0.076 / STA 219 0.157	18.05
3	5	Р	SJ 5 28.226 / SJ 5 28.295	17.87
3	5	Р	SJ 5 R21.719 / SJ 5 R22.525	17.87
4	5	Р	SJ 5 0.159R / SJ 5 2.461	16.16
4	5	Р	STA 5 9.449 / STA 5 23.002	16.16
4	5	Р	SJ 5 39.292 / SJ 5 39.581	16.15
4	5	Р	STA 5 28.011 / SJ 5 2.461	16.15
4	5	Р	STA 5 9.456 / STA 5 23.244	16.15
4	4	Р	SJ 4 15.906 / SJ 4 15.912	16.10
4	4	Р	SJ 4 R16.266 / SJ 4 R16.994	16.10
4	99	Р	MER 99 R30.188 / MER 99 R35.542	15.53
	99	Р	SJ 99 18.955 / SJ 99 19.284	15.53

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
4	99	Р	SJ 99 27.401 / SJ 99 28.479	15.53
4	99	Р	SJ 99 31.579 / SJ 99 32.602	15.53
4	99	Р	STA 99 R0.523 / STA 99 R1.644	15.53
4	99	Р	MER 99 R30.382 / MER 99 R35.565	15.36
4	99	Р	SJ 99 18.88 / SJ 99 19.287	15.36
4	99	Р	SJ 99 27.5 / SJ 99 28.479	15.36
4	99	Р	SJ 99 31.58 / SJ 99 32.573	15.36
4	99	Р	STA 99 R0.518 / STA 99 R1.639	15.36
4	580	S	SJ 580 1.398 / SJ 580 L0.045	15.22
4	580	S	SJ 580 8.344 / SJ 580 7.972	15.22
4	580	Р	SJ 580 1.413 / SJ 580 L0.249	15.17
4	580	Р	SJ 580 8.299 / SJ 580 8.153	15.17
4	152	Р	MER 152 R10.931 / MER 152 11.277	14.63
4	152	Р	MER 152 R35.145 / MER 152 R9.799	14.63
4	4	Р	SJ 4 15.905 / SJ 4 15.912	14.59
4	4	Р	SJ 4 19.751 / SJ 4 19.845	14.59
4	4	Р	SJ 4 19.902 / SJ 4 21.629	14.59
4	4	Р	SJ 4 R16.267 / SJ 4 R16.995	14.59
4	152	Р	MER 152 R0 / MER 152 R7.909	14.53
4	152	Р	MER 152 R10.928 / MER 152 11.281	14.53
4	26	Р	SJ 26 1.11 / SJ 26 1.359	13.53
4	120	Р	SJ 120 6.585 / STA 120 6.901	13.49
4	120	Р	TUO 120 30.357 / TUO 120 R33.393	13.49
4	108	Р	STA 108 R22.973 / STA 108 27.623	13.47
4	108	Р	STA 108 31.142 / STA 108 31.3	13.23
4	108	Р	STA 108 32.146 / STA 108 36.787	13.23
4	108	Р	STA 108 R22.973 / STA 108 30.743	13.23
4	108	Р	TUO 108 5.986 / TUO 108 6.779	13.23
4	108	Р	TUO 108 R4.843 / TUO 108 5.798	13.23
4	88	Р	AMA 88 19.32 / AMA 88 R23.63	13.19
4	88	Р	AMA 88 29.628 / AMA 88 R31.828	13.19
4	88	Р	AMA 88 R24.145 / AMA 88 R25.605	13.19
4	88	Р	AMA 88 R26.051 / AMA 88 R26.558	13.19
4	88	Р	AMA 88 R27.001 / AMA 88 29.479	13.19
4	88	Р	SJ 88 1.57 / SJ 88 14.775	13.19
4	26	Р	AMA 26 3.842 / AMA 26 4.644	13.08
4	26	Р	SJ 26 1.11 / SJ 26 1.381	13.08
4	26	Р	SJ 26 2.383 / SJ 26 2.623	13.08
4	26	Р	SJ 26 2.829 / SJ 26 4.082	13.08
4	219	Р	STA 219 4.458 / STA 219 4.858	13.04

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
4	219	Р	STA 219 4.565 / STA 219 4.858	13.04
4	165	Р	MER 165 32.367 / MER 165 33.083	13.02
4	165	Р	MER 165 34.362 / STA 165 1.545	13.02
4	132	Р	STA 132 14.52 / STA 132 14.651	12.96
4	132	Р	STA 132 14.983 / STA 132 15.128	12.96
4	132	Р	STA 132 15.34 / STA 132 15.617	12.96
4	132	Р	STA 132 15.903 / STA 132 20.209	12.96
4	132	Р	STA 132 8.328 / STA 132 14.442	12.96
4	12	Р	SJ 12 10.16 / SJ 12 10.178	12.95
4	12	Р	SJ 12 10.213 / SJ 12 10.455	12.95
4	12	Р	SJ 12 10.821 / SJ 12 18.068	12.95
4	12	Р	SJ 12 18.08 / SJ 12 18.096	12.95
4	12	Р	SJ 12 18.424 / SJ 12 L23.17	12.95
4	140	Р	MPA 140 19.74 / MPA 140 21.47	12.93
4	140	Р	MPA 140 21.915 / MPA 140 22.08	12.93
4	12	Р	SJ 12 10.211 / SJ 12 10.454	12.87
4	12	Р	SJ 12 12.42 / SJ 12 12.863	12.87
4	12	Р	SJ 12 15.2 / SJ 12 18.068	12.87
4	120	Р	SJ 120 10.595 / SJ 120 11.294	12.80
4	120	Р	SJ 120 11.644 / SJ 120 13.024	12.80
4	120	Р	SJ 120 13.553 / SJ 120 14.014	12.80
4	120	Р	SJ 120 14.571 / SJ 120 15.03	12.80
4	120	Р	SJ 120 16.157 / SJ 120 18.176	12.80
4	120	Р	SJ 120 6.823 / SJ 120 6.44	12.80
4	120	Р	SJ 120 8.354 / SJ 120 9.217	12.80
4	120	Р	SJ 120 9.581 / SJ 120 9.911	12.80
4	120	Р	STA 120 4.3 / STA 120 4.736	12.80
4	120	Р	STA 120 5.248 / STA 120 6.86	12.80
4	33	Р	MER 33 R13.238 / MER 33 R13.597	12.78
4	88	Р	AMA 88 20.658 / AMA 88 20.979	12.64
4	88	Р	AMA 88 22.692 / AMA 88 23.358	12.64
4	88	Р	SJ 88 13.194 / SJ 88 14.457	12.64
4	88	Р	SJ 88 2.217 / SJ 88 2.458	12.64
4	132	Р	STA 132 11.187 / STA 132 11.579	12.62
4	132	Р	STA 132 13.336 / STA 132 14.144	12.62
4	132	Р	STA 132 14.319 / STA 132 14.442	12.62
4	132	Р	STA 132 14.983 / STA 132 15.127	12.62
4	132	Р	STA 132 15.34 / STA 132 15.617	12.62
4	132	Р	STA 132 15.838 / STA 132 19.757	12.62
4	132	Р	STA 132 20.036 / STA 132 20.209	12.62

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
4	132	Р	STA 132 8.328 / STA 132 8.485	12.62
5	219	Р	STA 219 0.152 / STA 219 4.458	12.15
5	219	Р	STA 219 0.157 / STA 219 4.565	12.15
5	120	Р	TUO 120 R23.9 / TUO 120 30.357	12.15
5	120	Р	TUO 120 R33.393 / TUO 120 50.084	12.15
5	12	Р	SJ 12 10.156 / SJ 12 10.16	12.01
5	12	Р	SJ 12 18.096 / SJ 12 18.424	12.01
5	12	Р	SJ 12 L23.17 / SJ 12 L23.286	12.01
5	12	Р	SJ 12 18.096 / SJ 12 18.424	12.00
5	12	Р	SJ 12 L23.17 / SJ 12 L23.286	12.00
5	132	Р	STA 132 14.442 / STA 132 14.52	11.96
5	132	Р	STA 132 14.651 / STA 132 14.983	11.96
5	132	Р	STA 132 15.128 / STA 132 15.34	11.96
5	132	Р	STA 132 15.617 / STA 132 15.903	11.96
5	132	Р	STA 132 20.209 / STA 132 R31.683	11.96
5	140	Р	MPA 140 14.364 / MPA 140 15.4	11.90
5	140	Р	MPA 140 21.47 / MPA 140 21.915	11.90
5	140	Р	MPA 140 25.107 / MPA 140 25.538	11.90
5	132	Р	STA 132 14.442 / STA 132 14.52	11.88
5	132	Р	STA 132 14.651 / STA 132 14.983	11.88
5	132	Р	STA 132 15.127 / STA 132 15.34	11.88
5	132	Р	STA 132 15.617 / STA 132 15.838	11.88
5	132	Р	STA 132 20.209 / STA 132 20.438	11.88
5	132	Р	STA 132 22.838 / STA 132 23.404	11.88
5	132	Р	STA 132 27.042 / STA 132 27.755	11.88
5	132	Р	STA 132 27.9 / STA 132 28.095	11.88
5	165	Р	MER 165 31.868 / MER 165 32.367	11.83
5	165	Р	MER 165 33.083 / MER 165 34.362	11.83
5	26	Р	SJ 26 1.359 / SJ 26 2.383	11.81
5	26	Р	SJ 26 2.623 / SJ 26 2.829	11.81
5	26	Р	SJ 26 4.082 / SJ 26 4.709	11.81
5	26	Р	SJ 26 5.125 / SJ 26 5.851	11.81
5	26	Р	SJ 26 9.795 / SJ 26 10.838	11.81
5	165	Р	MER 165 33.083 / MER 165 34.362	11.79
5	33	Р	STA 33 18.9 / STA 33 19.92	11.69
5	33	Р	STA 33 6.468 / STA 33 15.196	11.69
5	26	Р	CAL 26 24.78 / AMA 26 3.842	11.64
5	26	Р	SJ 26 1.381 / SJ 26 2.383	11.64
5	26	Р	SJ 26 2.623 / SJ 26 2.829	11.64
5	26	Р	SJ 26 4.082 / SJ 26 11.376	11.64

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
5	49	Р	MPA 49 13.352 / MPA 49 13.778	11.63
5	49	Р	MPA 49 15.53 / MPA 49 16.738	11.63
5	49	Р	MPA 49 18.511 / MPA 49 19.497	11.63
5	88	Р	AMA 88 23.358 / AMA 88 R24.145	11.10
5	88	Р	AMA 88 29.479 / AMA 88 29.628	11.10
5	88	Р	AMA 88 R25.605 / AMA 88 R26.051	11.10
5	88	Р	AMA 88 R26.558 / AMA 88 R27.001	11.10
5	88	Р	AMA 88 R31.828 / AMA 88 R32.15	11.10
5	88	Р	SJ 88 0.157 / SJ 88 1.57	11.10
5	108	Р	STA 108 30.743 / STA 108 31.142	10.66
5	108	Р	STA 108 31.3 / STA 108 32.146	10.66
5	108	Р	STA 108 36.787 / STA 108 38.236	10.66
5	108	Р	STA 108 R22.438R / STA 108 R22.973	10.66
5	108	Р	TUO 108 5.798 / TUO 108 5.986	10.66
5	108	Р	TUO 108 6.779 / TUO 108 R9.808	10.66
5	108	Р	TUO 108 R10.257 / TUO 108 R10.852	10.66
5	108	Р	TUO 108 R11.547 / TUO 108 R11.897	10.66
5	140	Р	MPA 140 10.237 / MPA 140 19.74	10.20
5	140	Р	MPA 140 21.47 / MPA 140 21.915	10.20
5	140	Р	MPA 140 22.08 / MPA 140 51.789	10.20
5	49	Р	MAD 49 9.275 / MPA 49 18.511	9.89
5	49	Р	MPA 49 18.511 / MPA 49 43.308	9.89
5	108	Р	STA 108 30.743 / STA 108 31.142	8.80
5	108	Р	STA 108 31.3 / STA 108 32.146	8.80
5	108	Р	STA 108 36.787 / STA 108 38.236	8.80
5	108	Р	STA 108 L22.958 / STA 108 L22.836	8.80
5	108	Р	STA 108 L22.958 / STA 108 R22.973	8.80
5	108	Р	STA 108 R22.438R / STA 108 L22.958	8.80
5	108	Р	TUO 108 5.798 / TUO 108 5.986	8.80
5	108	Р	TUO 108 6.779 / TUO 108 15.379	8.80
5	4	Р	CAL 4 28.75 / CAL 4 40.92	8.55
5	4	Р	SJ 4 19.75 / SJ 4 19.751	8.55
5	4	Р	SJ 4 19.845 / SJ 4 19.902	8.55
5	4	Р	SJ 4 21.629 / SJ 4 34.143	8.55
5	88	Р	ALP 88 22.669 / ALP 88 25.283	6.82
5	88	Р	AMA 88 29.479 / AMA 88 29.628	6.82
5	88	Р	AMA 88 R23.63 / AMA 88 R24.145	6.82
5	88	Р	AMA 88 R25.605 / AMA 88 R26.051	6.82
5	88	Р	AMA 88 R26.558 / AMA 88 R27.001	6.82
5	88	Р	AMA 88 R31.828 / AMA 88 R38.315	6.82

Priority	Route	Carriageway ³¹	From County & Postmile / To County & Postmile ³²	Average Cross-Hazard Prioritization Score ³³
5	88	Р	SJ 88 0.157 / SJ 88 1.57	6.82
5	4	Р	CAL 4 40.149 / CAL 4 40.343	3.06
5	4	Р	SJ 4 19.838 / SJ 4 19.902	3.06

This page intentionally left blank.

