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tested. Deployment guidelines for CMS are presented based on these results.   
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EXECUTIVE SUMMARY 
 
This research report is the final deliverable for PATH Task Order 6303: “Optimal Use of 
CMS for Displaying Travel Times”. The purpose of this task order is to develop guidelines 
for displaying travel times on Changeable Message Signs (CMS). This report details the 
results from: 1) an evaluation of travel times currently displayed on CMS in the San 
Francisco Bay Area; 2) a survey of bay area commuters regarding the perception and 
preference for displaying travel times on CMS; 3) a model that evaluates the CMS impacts 
on network traffic and determines optimal CMS configurations. Deployment guidelines are 
developed based on these results.   

Travel time for selected itineraries constitutes one of the most relevant roadway traffic 
metrics. Numerous studies have been conducted to estimate travel times based on data from 
loop detectors. In the first part of this research, we focus on evaluating the performances of a 
set of “benchmark” methods (i.e. algorithms along with specific speed data from dual loop 
detectors) that estimate route travel times for displaying travel times on CMS. The accuracy 
of travel time estimates are evaluated with probe vehicle data (the “ground truth”) obtained 
from FasTrak in the San Francisco Bay Area.  

The second part of this research analyzes the result of a survey of Bay Area commuters 
regarding the perception and preference for displaying travel times on CMS. 

The major findings we obtained from the analysis of the surveys are the following: 

• The San Francisco Bay Area achieved reasonably good coverage of travel time display 
on CMS; 

• Displayed travel times are relevant to most commuters’ commute route, and among those 
who consider the messages not relevant to their commute routes, we see that a much 
larger percentage travel less frequently and a much larger percentage travel a short 
distance; 

• The majority of surveyed commuters believe the estimates are accurate within 5 
minutes, and an overwhelming majority regard the travel time display as useful;  
 

• Perception of accuracy of estimated travel time greatly affects the perceived 
usefulness of travel time display. However, even when the perceived accuracy is 
within 10-15 minutes, the vast majority (over 80%) of the commuters who hold the 
accuracy perception still regards the travel time display on CMS as useful; 
 

• Benefits besides route choice, such as being able to plan ahead and having peace of mind, 
are as important as route choice to users when they consider the usefulness of travel time 
display on CMS.  

• Users need not to make a choice or decision to benefit from CMS travel time display. 
Even if there is no route choice, it is beneficial to have travel time display on CMS if 
there is great variability and uncertainty in traffic condition on a freeway segment. 
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• Commuters use many sources for travel information. Travel time display on CMS 
requires no user input or interaction but offers great value compared to other services that 
require input and thus are used infrequently, by few, and unsafely. 

• Estimated travel time should be displayed as an exact number of minutes. An update 
frequency of every 2 minutes is recommended. 

• For most people, route diversion is a real possibility. However, a large threshold for the 
difference between expected route travel times needs to be reached before commuters 
switch from their usual routes. 

• The effectiveness of CMS alone in persuading drivers to divert is likely to be small. 
 
In the third part, we study the optimal CMS configuration problem for displaying travel times 
on freeway CMS. The study is based on a Stochastic Network – Stochastic User Equilibrium 
(SN-SUE) model to capture how commuters make route choice decisions which considers 
both travel time variability and travelers’ perceptions errors. To solve the optimal CMS 
configuration problem, we developed a heuristic method based on simulated annealing (SA). 
The model and solution method are tested on a hypothetical network and a real world 
freeway network in the San Francisco Bay Area.  
 
Based on results from the three parts of this research, we recommend the following 
guidelines for displaying travel times on CMS: 
 

• Benefits besides route choice, such as being able to plan ahead and having peace of 
mind, are as important as route choice to users when they consider the usefulness of 
travel time display on CMS. When determining whether travel times should be 
displayed on a CMS, all these benefits needs to be considered. Even if there is no 
route choice, it is beneficial to have travel time display on CMS if there is great 
variability and uncertainty in traffic condition on a freeway segment. 
 

• Exactly which CMS should be activated to display travel times (or whether new CMS 
needs to be installed for this purpose) and which destinations/routes to display on a CMS 
need to be determined from a system point of view based on the factors identified below:  
o roadway geometry,  
o traffic conditions especially travel time variability,  
o travelers’ risk-taking behaviors,  
o travelers’ perceptions over the actual travel times, and  
o CMS installation/activation cost.  

• To fully explore the advantages of displaying travel times on CMS, thorough 
investigations on travel time variability of the study area and the perception of 
travelers are highly recommended. 
 

• Improving accuracy is important for enhancing the perceived usefulness of the travel 
time display. To this end,  
o Peak and off-peak should be treated differently; 
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o When the route travel time is relatively short and the transition from free-flow to 
maximum congestion is slow, the differences using different estimation algorithms 
are not significant, and the instantaneous travel time can be adopted for its 
simplicity. 

o Using speed data from different lanes makes significant difference in the accuracy 
of the travel time estimates. For individual routes, one can always archive and 
study historical (average and lane-by-lane) travel times computed from loop 
detectors, and compare them to probe vehicle data. If patterns similar to those 
shown in this study are found, lane-by-lane loop data can be used to improve 
travel time estimation. 

o When relying on loop detectors alone, loop spacing should not be too large. Using 
multiple data source when loop coverage is poor. 

• To properly display travel time on CMS, 
o Estimated travel time should be displayed as an exact number of minutes, not as a 

range. 
o Adopt an update frequency of every 2 minutes. 

• Coordinate CMS with other Automated Travel Information Systems for maximum 
effectiveness.  

 
The successful adoption of the deployment guidelines developed in this study will enable the 
State of California to display travel times on CMS as a common practice statewide. For each 
individual traveler, the access to accurate travel time information helps him to make better 
decisions on travel route and departure time. This reduces individual travel time and 
uncertainty, and may further reduce driver anxiety and foster a safer travel environment with 
less air pollution and energy consumption. On a system level, the provision of useful real-
time information via CMS establishes a control mechanism that helps distribute travel 
demand throughout the roadway network. This, if done appropriately, may help drive the 
system toward a global optimum with minimum system-wide travel time and maximum 
travel time reliability. 
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CHAPTER 1 
INTRODUCTION 

 
Changeable Message Signs (CMS), also called Dynamic Message Signs (DMS) or Variable 
Message Signs (VMS) or Electronic Message Signs (EMS), are commonly-used ways today 
for disseminating real-time traffic information to the driving public. Expected benefits of 
CMS are reduced delays and risks caused by incidents, construction, or other recurrent and 
non-recurring congestion. The assumption is that drivers will make informed decisions based 
on information provided by the signs (such as diverting to an alternative route in case 
incidents happened on the freeway). CMS can also help alleviate drivers’ stress and better 
manage their time (e.g. one can call in advance if he/she is going to be late for work based on 
the information from the signs). In the US, CMS have been widely deployed as shown in  
Figure 1, which depicts an increasing rate of CMS deployment.  
 
 

 
 
Figure 1: CMS Deployments by Miles Covered (Source: RITA (2006)) 
 
Travel time and delay messages are considered to be valuable information and an efficient 
use of CMS in the absence of adverse traffic incidents or events. In this manner, travel times 
(or delays) not only give the estimated time between a CMS and a point downstream, the 
presence of travel time information also gives the implicit message that there are no adverse 
conditions affecting traffic (see PBSJ(2004)).  In 2004, a memo1 released by the Federal 
Highway Administrations (FHWA) recommends local agencies display travel times on CMS. 
The memo states that “[travel times] have proven successful in regions or corridors that 
experience periods of recurring congestion - congestion generally resulting from traffic 
demand exceeding available capacity and not caused by any specific event such as a traffic 
incident, road construction or a lane closure.” It further recommends that “no new 
Changeable Message Signs (CMS) should be installed in a major metropolitan area or along 
a heavily traveled route unless the operating agency and the jurisdiction have the capability 
to display travel time messages.” 
 

                                                
1 http://ops.fhwa.dot.gov/travelinfo/resources/cms_rept/travtime.htm 
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In California, expanding the scope and coverage of roadway travel times is a top-priority of 
the GoCalifornia initiative. Supporting statements for accurate travel time estimates and 
traveler information have come all the way from the Governor’s office.  
 
The purpose of this research is to develop guidelines for displaying travel times on 
Changeable Message Signs. This rest of report is organized as follows. Chapter 2 evaluates 
the performance of travel time estimation methods for real-time traffic applications. Chapter 
3 analyzes a survey of bay area commuters regarding the perception and preference for 
displaying travel times on CMS. Chapter 4 presents a model that evaluates the CMS impacts 
on network traffic and determines optimal CMS configurations. Chapter 5 offers deployment 
guidelines for displaying travel times on CMS and concluding remarks.   
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CHAPTER 2 
PERFORMANCE EVALUATION OF TRAVEL TIME ESTIMATION METHODS 

 
2.1 Background 

Travel time for selected itineraries constitutes one of the most relevant roadway traffic 
metrics. This is because (1) travel time is a crucial measure of traffic conditions and system 
performance; (2) travel time represents information that is easy for the driving public to 
understand and process; and (3) travel time information can arguably enable travelers to 
make educated choices about their itinerary, departure time or even transportation mode, with 
the result of bringing about a form of “system self-management.” Numerous studies reveal 
that commuters appreciate and value travel time information, which reduces their uncertainty 
and their stress (Peng et al., 2004; Lindveld et al., 2000; Khattak et al., 1994). Many 
researchers have contributed to developing algorithms for accurate and reliable travel time 
estimation (Oda, 1990; Smith and Demetsky, 1997; Huisken and Maarseveen, 2000; Rice 
and Zwet, 2001; Hartley, 2003; Hinsbergen et al, 2007, to name just a few). 

Measuring the quality of travel time estimates is therefore important because it helps to 
understand the performance of travel time estimation and point to needed improvements in 
traffic data collection. In the past, despite the extensive research efforts on developing travel 
time estimation methods, studies devoted specifically on evaluating the performances of 
these methods were rare. Although many studies did provide certain discussions on 
performances of the proposed methods, the discussions were limited in the sense that (1) 
“ground truth” travel times (e.g. those from probe vehicles) were not widely available due to 
technical or resource limitations; (2) in case of loop detectors, most studies used speed data 
averaged across multiple lanes without looking at lane-by-lane travel time variations; and (3) 
evaluations were mostly conducted on “baseline” scenarios, i.e., detector locations were 
assumed to be given and all detector data were used to estimate travel times.  

Lindveld et al. (2000) is one of the few studies focusing on evaluating performances of 
several travel time estimation methods using loop detector data. They found that up to 
moderate congestion levels, travel time estimators could produce reasonably accurate results 
(10-15%); however, for heavy congestion, the results may degrade significantly. The ground-
truth travel times in Lindveld et al. (2000) were collected via license plate readers, floating 
car runs, and toll ticket collection. However, the number of observed data points using 
floating cars is not sufficient; travel times from toll ticket collection have problems as well 
(Lindveld et al., 2000, pp. 46). Also, there is no discussion about removing outliers within 
the observed data. In addition, lane-by-lane travel times were not computed and studied in 
Lindveld et al. (2000). Zhang et al. (1999) studied travel time estimation methods based on 
single loop detector data. Floating car runs were conducted to gather the ground truth travel 
times. As pointed out in Kwon et al. (2006), however, limited floating car runs may be 
biased. Kwon et al (2006) and Fujito et al. (2006) studied the relationship between detector 
spacing and travel time estimation quality. However, they used travel times computed from 
the “baseline” detector spacing as the ground truth travel times. As shown in this study, this 
may be very different from actually experienced travel times by individual drivers. Note also 
that evaluating travel time estimation quality is essentially different from studying the 
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variability of travel times which has been widely studied in the literature (Noland and Polak, 
2002; Van Lint et al, 2004; Chen et al., 2003). The former focuses on the differences of 
estimated and actual travel times, while the latter is supposed to study the features (such as 
distribution) of the actual travel times. For the same reason, our study also differs from the 
travel time reliability studies that have gained much attention recently in the transportation 
research communities (Al-Deek and Emam, 2006; Chen et al., 2003; Chen et al., 1999; Liu et 
al., 2007). 

In this section, we evaluate a set of “benchmark” methods, i.e. algorithms along with specific 
speed data from dual loop detectors, that give point estimate of route travel times. The 
evaluated algorithms include three that are popularly used in real time traffic applications 
such as displaying travel times on Changeable Message Signs (CMS): the instantaneous, 
dynamic and linear-regression travel times (Rice and Zwet, 2001). The data source to be 
evaluated is double loop detectors, and both average and lane-by-lane speeds are used to 
compute the average and lane-specific travel times. Travel time estimates are compared with 
probe vehicle travel times, obtained from FasTrak in the San Francisco Bay Area. Due to the 
large amount of data samples, FasTrak travel times are expected to provide more accurate 
representation of the ground truth travel times than limited floating car runs, although the 
data also contain outliers that need to be filtered.  

We first propose a local Median Absolute Deviation (MAD) method with variable window 
length to remove outliers in FasTrak data. The method captures traffic characteristics 
properly and is thus appropriate for processing probe-vehicle data. The processed “ground 
truth” travel time has a clear time-dependent trend. The dispersion of travel time is larger in 
off-peak than in peak periods, which coincides with the theoretical explanation by Daganzo 
(1997, pp. 142).  

Two measures of the point estimate accuracy are defined. One is based on the absolute 
difference between the loop-based travel time estimate and the estimate of medium travel 
time via FasTrak data. The other is based on whether the loop-based travel time estimate falls 
into certain range of travel time estimated from the dispersion estimated of FasTrak data. 

We next conduct performance evaluation for a particular route in the San Francisco Bay 
Area. The evaluation is done for different traffic conditions represented by time-of-day 
periods and various detector spacing scenarios. The results show that 1) the accuracy of 
travel time estimates based on loop detector data  is better in off-peak than in peak periods ; 
2) lane-by-lane loop detector speed data may be utilized to improve travel time estimation; 
and 3) larger detector spacing negatively affect accuracy of travel time estimation. 

The extent to which findings in this section apply to other sites may vary. We thus provide 
discussions at the end on how these findings can be further verified and applied to achieve 
improved travel time estimation quality. 
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2.2 Ground Truth Travel Times from Probe Vehicles 

The travel time  for an arbitrary vehicle to travel from a CMS location to certain 
destination via route r at time t, is a random variable. The population of concern is the set of 
different people driving different cars who potentially may take route r at time t (i.e. starting 
from the CMS location at time t). In Noland and Polak (2002), this randomness is termed as 
“vehicle-to-vehicle travel time variation.” Note that sometime it may make sense to impose 
further restrictions, such as “not using carpool lane”, “with FasTrak onboard”, and “not 
stopping over at a point along the route”. Ideally, there should be sufficiently many drivers 
who take route r at time t, which constitute the samples of . However, if steps of time 
and distance are arbitrarily fine, at any time t there is only at most one vehicle passing 
through the exact CMS location. Thus strictly speaking, we can have at most one sample for 

 in reality. 
 
The term “ground-truth” in this study refers to travel time values obtained via probe vehicles, 
each generating one observation of the random variable . A “ground-truth’ travel time 
value may be the best-available estimate of the medium of  if there is no other relevant 
information. On the other hand, if observations for travel time  are available, the 
“ground-truth’ travel time value may not be the best-available estimate of the medium of 

. 
 
In order to obtain estimates of not only the medium but dispersion of the travel time variable, 
we may define  as the (random) travel time for a vehicle to travel route r, starting from 
the CMS location at some time . This is feasible when we are only 
interested in (or limited to) discrete points on the time scale. Under this alternative definition, 
we may have multiple samples for . However, now the difference of the observed travel 
times may be due not only to driver/vehicle differences but largely to traffic condition change 
from time  to time  if Δ is too large.  
 
The “ground truth” travel times in this section are obtained from probe vehicles, particularly 
the FasTrak data in the San Francisco Bay Area. FasTrak is used statewide in California to 
automatically collect road and bridge tolls. FasTrak readers are currently installed at each toll 
booth, as well as along the road side every 5 to 10 miles. It has a large market penetration in 
the Bay Area: nearly 50% of drivers use FasTrak to pay their bridge tolls in 2007 
(http://goldengate.org/board/2007/Min-Sum/fa070426min.php). Fastrak data contain 
individual vehicle travel times between two consecutive readers. 
 The “ground-truth’ travel time values obtained from FasTrak data may be interpreted as 
observations of  under the alternative definition (i.e. for the period of 

), with Δ being sufficiently small. In this case,  may contain multiple 
observations but the differences between observed values are largely due to driver/vehicle 
differences. However, because of the population of concern, certain Fastrak data points 
should be excluded: some vehicles may have used the carpool lane, or the itinerary between 
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the origin and the destination is not the intended one (i.e. route r). Thus the raw FasTrak data 
need to be processed to remove outliers. 
 
In addition, if Δ is too small, there will be too few observations in  to 
characterize the random variable . Thus choosing appropriate Δ is important in using the 
FasTrak data to estimate the medium and dispersion of travel times. This issue will be further 
discussed below. 
 

2.2.1 A Local MAD Method for Probe-Vehicle Data Processing 

Figure 2 depicts the raw FasTrak travel times for a route from the City of Albany to the 
Carquinez Bridge along I-80 EB. The time-dependent pattern of the travel time is obvious in 
Figure 2, but the raw data contain a significant amount of outliers. Outliers include those 
vehicles that took excessively long time to travel the route, possibly because they left and re-
entered the freeway at some intermediate points. Outliers may also come from detection 
errors that result in those “negative” travel times in Figure 2. Vehicles that used the HOV 
lane during PM peak hours are also treated as outliers since their travel times are much lower 
than those using general-purpose lanes. 

To remove outliers, we applied the Median Absolute Deviation (MAD) method (Hoaglin et 
al., 1983). MAD is a statistical measure to capture the variation of a given set of data points. 
Assume  is the set of data points. Then MAD can be defined as 

 .       (2.1) 

Here  is the median value of . To detect whether xi is an outlier, a z-score 
needs to be computed for each data point: 

         (2.2) 

Then if  for a given threshold , xi can be regarded as an outlier. Here we use . 
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Figure 2: Raw FasTrak data 
 

Since the raw FasTrak data in Figure 2 have a clear time-dependent pattern, we apply the 
MAD method locally to data points in a time window (band) with a proper “bandwidth.” We 
call this method the Local MAD Method (LMM). Choosing the bandwidth, however, is not 
trivial. First, to adequately capture the time-dependent trend, it is natural to use a small 
bandwidth; but this may result in only a few data points within a band for which the MAD 
method may not be properly applied. On the other hand, a large bandwidth can certainly 
make the MAD method statistically meaningful, but the time-dependent pattern may be 
smoothed out.  

To account for the above two issues, a method of variable bandwidth is adopted in this study. 
We first set the default bandwidth as  minutes, which is expansible so that each band 
contains at least M data points. This is to make the bandwidth as small as possible, while still 
keeping the processing statistically meaningful. Such a bandwidth will be constructed for 
each of the data points in the set , as illustrated in the LMM algorithm below. 

LMM Algorithm 
Step 1. Initialization. Set i=1, =10 minutes, M=25, Δh=2 minute, and =4.5. 

Step 2 Major Iteration.  

    Step 2.1 Determine the Bandwidth. Assume the timestamp of the current data point  is 
.  Set h= . Assume the number of data points in the time window   is m. 

If m M, go to Step 2.2; otherwise, set h=h+ Δh, update the bandwidth, recalculate m, and 
check again. 

Travel times of 
HOV vehicles 
during PM 
peak hours are 
considered as 
outliers 
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    Step 2.2 Local MAD Method. Compute the z statistics using equations (2.1) and (2.2) for 
the current data point  using all points in the band . If z , record  as 
an outlier. 

Step 3. If i=N, go to Step 4; otherwise, set i=i+1 and go to Step 2.1. 

Step 4. Remove all recorded outliers from the set . 
 
The above LMM algorithm shows that we initially set the bandwidth as 10 minutes, which is 
expanded if needed symmetrically to both sides of the band (using 1 minute as the increment 
for each side) until the band contains at least 25 data points. Figure 4 illustrates that if we 
apply this method to the FasTrak data of a particular day, how the bandwidths will change 
over time. It clearly shows that in order to have enough data samples (25 in this study) the 
bandwidth is much larger in off-peak hours than peak hours. For example, nearly 60% of 
bandwidths in PM peak hours are less than or equal to 16 minutes and the minimum 
bandwidth is 10-minute; whereas for other periods of the day, the minimum bandwidth are 
much larger. This is consistent with the trip characteristics of commuter traffic: there are 
usually more travelers, especially those using FasTrak toll tags, in peak hours (the PM peak 
in this case) than off-peak hours. As a result, there are more FasTrak data samples per unit 
time during peak hours than off-peak hours. As discussed later in Section 2.2.2, the 
bandwidth generated this way is suitable for processing FasTrak data.  

 

Figure 3: Variable Bandwidth 
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Figure 4 shows the processed FasTrak data, which we refer to as the “ground truth” travel 
times thereafter in this study. It illustrates that it is inadequate to characterize the travel time 
at an instant with a single value, as many previous studies did. It is also worthwhile to 
differentiate the travel time variations at any given time in Figure 4 with those studied in 
travel time reliability. In Figure 4, it comes from vehicle-to-vehicle variations (i.e. even for 
the same time instant, travel times from different vehicles are different due to varied driving 
behaviors, see Noland and Polak (2002)). In travel time reliability studies, however, travel 
time variations across different days (i.e., day-to-day) are considered and for a particular day 
travel times are treated as a single value. Therefore, for a given time instant, travel time 
variations in travel time reliability studies mainly reflect traffic condition changes across 
different days; in Figure 4 however, the variations are mainly due to varied driving behaviors 
(i.e., aggressiveness) of individual drivers, not changes of traffic conditions. We also note in 
Figure 4 that the dispersion of travel time is much smaller during PM peak than other periods 
of the day for the study route. We will show in Section 2.2.2  why this is the case. 

 

Figure 4: Processed Fastrak data 
 

2.2.2 Characterization of Travel Time 

The travel time dispersion in Figure 4 imposes difficulty on how to properly characterize 
travel time. One may use a single “representative” value such as the median without 
capturing the dispersion. To capture the dispersion, we estimate the interval of the 15th and 
85th percentile travel times. Figure 5 illustrates the estimated 15th, median (50th), and 85th 
percentile travel times based on the processed FasTrak data in Figure 4. The use of the 15th 
and 85th percentiles is somewhat arbitrary. However, this gives us an interval that encloses 
the travel times of the middle 70% of drivers (in terms of driving aggressiveness).  
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Figure 5: Percentile Travel Times 
 

The percentile travel times in Figure 5 were obtained via the method of local linear fit, 
originally proposed by Koenker and Bassett (1978). This method was later applied by Small 
et al. (2005) and Liu et al. (2007) to process travel times computed from loop data. Details of 
the method are omitted here and one can refer to (Small, 2005) for more discussions. 

Several observations follow Figure 4 and Figure 5. First, the most congested period for this 
route is the PM peak hours (15:00 – 19:00) during which the time-dependent trend of travel 
times is evident. For example, the median travel time increases from free-flow (around 15 
minutes) to almost 35 minutes from 15:00 to 17:00 and then decreases to about 15 minutes 
after 19:00. For the other periods of the day, travel times are fairly stable, i.e., no obvious 
trend is observed. This pattern can also be observed on the other days. Second, for the 
congested period (i.e., PM peak hours), the travel time dispersion at a given instant is small, 
while it is much larger during non-congested periods. The second observation may be 
explained by different driving behaviors at congested and non-congested periods. That is, 
under non-congested periods, drivers have more freedom to stick to their preferred driving 
styles (aggressive or not). Therefore, the resulting travel times have more variations. During 
heavily congested periods (which is the case for the PM peak hours of the studied route), 
however, what drivers can do most times is to keep “flowing” with the congested traffic. 
Hence, their individual driving preferences may not be reflected at all, resulting in the nearly 
homogeneous travel times during the congested period. This second observation has been 
previously suggested by Daganzo (1997, pp. 142) who believes that in a queue, delays (and 
thus travel times) can be predicted “independent of drivers’ shenanigans.” Our results here 
provide empirical evidences for that in Daganzo (1997). Note that the travel time dispersion 



 11 

in off-peak hours is expected – the range is from about 800 seconds to 1000 seconds, 
corresponding to speeds from 55 to nearly 70 MPH. 
 
Our observation is not inconsistent with previous findings in Chen et al. (2003) who reported 
that travel time variability is proportional to the mean travel time, because in Chen et al. 
(2003), the variability is obtained from multiple days, which as aforementioned, is mainly 
day-to-day variability. One should note that our observation is for a heavily congested route 
(like the one in this study); for lightly congested routes, large dispersions may still be 
observed.  
 
The above discussions also imply that LMM is appropriate for processing FasTrak data. This 
is because although LMM generates large bandwidths during off-peak hours as shown in 
Figure 3, the trend of ground truth travel times does not change too much as well. Therefore, 
the large time-window in off-peak hours will likely not smooth out the trend of travel times. 
While the trend does change fairly rapidly during peak hours, LMM generates rather small 
bandwidth (most less than 16 minutes), which should be adequate to capture the time-
dependent trend of travel times during peak hours. 
 

2.3 Methodology for Performance Evaluation of Travel Time Estimation Methods 

This section describes how the evaluation is conducted. The travel time estimation methods 
include three travel time estimation algorithms applied to speed data for individual lanes and 
the average of all lanes. Two quality measures are defined and applied. Following a 
description of the study site (route), the two scenarios used to examine the impact of different 
detector spacing are described.  

2.3.1 Travel Time Estimation Algorithms 

We test on three benchmark travel time estimation algorithms: the instantaneous, dynamic, 
and linear-regression (LR) algorithms. The instantaneous travel time assumes traffic 
conditions remain unchanged from the time a vehicle enters a route until it leaves the route. 
Therefore, route travel time can be computed by simply summing travel times of the 
constituent links at the time the vehicle enters the route. The dynamic route travel time is also 
a summation of travel times of its constituent links; however, the link travel time is computed 
using the latest traffic condition at the time a vehicle enters a particular link.  
 
The LR algorithm, on the other hand, combines (linearly) the instantaneous and dynamic 
travel times so that the historical trend of travel times for a given route can be considered to 
certain extent (Rice and Zwet, 2001; Chen et al., 2004). The LR algorithm can be expressed 
using the following equation. 

.      (2.3) 
 
Where we have  
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: the LR travel time for route r at departure time t, 
: the average dynamic travel time at time t computed from historical data,  

: the instantaneous travel time computed at time t, 
: the average instantaneous travel time computed at time t from historical data, 

: parameter that needs to be estimated. 
 
The parameters can be estimated via a linear regression model using historical data. For 
details, one can refer to Chen et al. (2004). In practice, t is discretized into five-minute 
intervals, i.e., we will have 288 parameters for a given route for an entire day. 
Note that computing the instantaneous and LR travel times only requires real time speeds. 
Therefore, they are suitable for real time traffic applications, such as posting travel times on 
CMS. The dynamic travel time needs speeds in the future and thus may not be used in real 
time applications. However, we include the dynamic travel time algorithm in our evaluation 
since it provides benchmark travel times that the other two algorithms can compare with. 

2.3.2 Quality Measures 

The travel time estimates given by the algorithms are point estimates. In this section, we 
define two measures of the point estimate accuracy: the relative error and the accuracy index. 
The former is based on the absolute difference between the loop-based travel time estimate 
and the estimate of medium travel time based on FasTrak data. The latter is based on 
whether the loop-based travel time estimate falls into certain range of travel time estimated 
from the dispersion of the FasTrak data. 

2.3.2.1 The Relative Error 
In this study, we use the median of the processed FasTrak data as the estimate of the ground 
truth travel time. First, we denote the estimate of the median travel time for route r for 
vehicles entering the first link of r at time t. Here t is the discrete time instant (e.g., in every 
five minutes). Similarly, is the loop-based estimated travel time for the same route at 
time t. Then the relative error can be defined as follows: 

.        (2.4) 

Equation (2.4) defines the accuracy measure for a particular time instant, which is referred as 
disaggregated measure. Sometimes aggregating quality measures over a certain time period 
may be of more interest, especially from practitioners’ point of view. The typical periods of a 
day may include AM off peak, AM peak, mid-day, PM peak, and PM off peak (Fujito et al., 
2006). For a given period p, the aggregated measure can be computed using the following 
equation: 
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.        (2.5) 

Here n is the total number of estimates within the period p. 

2.3.2.2 The Accuracy Index 

As aforementioned, the relative error measure does not capture the dispersion of the travel 
time random variable. In this study, we construct an interval by the estimated 15th and 85th 
percentile travel times based on FasTrak data, and define an accuracy index of the loop-
based estimated travel time at time t, denoted as . The accuracy index is 1 if the loop-
based estimated travel time lies in the interval; otherwise, it is zero. In other words, 

.      (2.6) 

Here  and  denote the estimated 15th and 85th percentile travel times at t, 
respectively, based on FasTrak data.2 Hence, the accuracy index at a single time instant is a 
binary value (0 or 1). This definition can be extended to a time period, e.g., AM or PM peak 
hours, as follows. 

,        (2.7) 

where n is the number of time instants in the time period p. The accuracy index over a time 
period, as defined in (2.7), may be more practical than what is defined in (2.6) for a single 
time instant. 

2.3.3 The Study Site 

As shown in Figure 6, a route along Interstate 80 EB from the City of Albany to the 
Carquinez Bridge was selected for the evaluation. In this figure, the dark arrow and “star” 
signs indicate, respectively, the origin and destination of the route. The length of the route is 
about 15 miles with the free flow travel time around 15 minutes (900 seconds) at 60 mph. We 
further selected four weekdays in Mid-September of 2006 for the evaluation. There are 33 
double loop detectors deployed approximately evenly in this route and most of them worked 
properly during the four evaluation days. We used 5-minute loop speeds to compute the 
estimated travel times. The data can be downloaded from PeMS 
(http://pems.eecs.berkeley.edu/). 

                                                
2 For simplicity, we will subsequently refer the estimated 15th,/50th/85th percentile travel time at t based on FasTrak data as the “15%/50%/85% ground 
truth”. 
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Figure 6: Evaluation Route and Loop Detectors  
(source: http://pems.eecs.berkeley.edu) 
 

2.3.4 Scenarios for Examining the Impact of Different Detector Spacings 

Two scenarios are evaluated. First, we test the baseline configuration of detector spacing. 
The baseline configuration is what is currently deployed on the route.  The spacing between 
adjacent loop detectors is approximately 0.5 mile. We are interested in assessing the 
performances of the three travel time estimation algorithms at different times of day, which 
we use as a proxy for recurrent congestion. In this study, different periods of a day are 
defined as AM off peak (00:00 – 07:00), AM peak (07:00 – 10:00), mid-day (10:00 – 15:00), 
PM peak (15:00 – 19:00), and PM off peak (19:00 – 0:00). Further, because there are loop 
detectors in each lane, we compute the lane-by-lane travel times and compare the resulting 
performances. 

In the second scenario, we vary detector spacing and investigate how it will impact travel 
time estimations. For this purpose, we randomly take out detectors. This scheme was also 
used in Kwon et al. (2006) and Fujito et al. (2006). However, detectors were removed in 
Kwon et al. (2006) purely randomly so that the remaining detectors may be distributed highly 
unevenly. Thus for the same average spacing, the estimated travel times may be very 
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different depending on whether sensors are evenly spaced or not. In Fujito et al. (2006), on 
the other hand, detectors were taken out in such a way that the remaining detectors are 
distributed almost evenly. Hence, the method in Fujito et al. (2006) resulted in only a few 
detector deployment settings for a given number of remaining detectors and the variation of 
performances may not be easily captured. 

In this study, we generalize the random selection process in the above two studies. In 
particular, we randomly take out detectors in such a way that the remaining detector spacing 
satisfies the following condition: 

.        (2.8) 

Here  is the i-th spacing,  is the average spacing, and  is a constant. By using different 
values of , one can control the variations of individual detector spacing for a given number 
of detectors. For example, if =0, we require sensors to be deployed absolutely evenly 
(close to what was done in Fujito et al. (2006)); if , sensors can be selected 
completely randomly (close to what was done in Kwon et al. (2006)). In our study,  is 
used. 

We implemented the above method as a random selection algorithm. For the route shown in 
Figure 6, we took out detectors in such a way that the resulting average detector spacing is 
0.75 mile, 1 mile, 1.5miles, 2 miles, 2.5 miles, 3 miles, and 5 miles, respectively (i.e., the 
remaining number of detectors is correspondingly 20, 15, 10, 8, 6, 5, and 3). For each of the 
above seven scenarios, we ran the random selection algorithm for multiple times so that 100 
distinct detector settings were obtained. These detector settings are used later to evaluate the 
performances of travel time algorithms under different detector spacing configurations. 
 
2.4 Evaluation Results 

In this section, we present the evaluation results that illustrate the performances of the travel 
time methods evaluated in this study. 

2.4.1 The Baseline Scenario 

Estimated travel times using the three algorithms for the evaluation route on September 6, 
2006 are shown in three figures: Figure 7 for instantaneous travel times, Figure 8 for 
dynamic travel times, and Figure 9 for LR travel times. In each figure, estimated travel times 
using data on individual lanes are shown in different broken lines. Most part of the evaluation 
route has four lanes, but the last 1/3 of the route (about 6 miles) has only 3 lanes. Therefore, 
lane-specific travel times for lanes 1 – 3 are shown in the figures. Lane 1 is the left-most 
lane, and during peak hours only high-occupancy vehicles are allowed in this lane. Lane 2 is 
the second from the left, and Lane 3 is the third from the left. Estimated travel times for these 
three lanes were calculated. The line labeled as “All Lanes” resulted from the average speed 
across all lanes except for PM peak hours (from 3:00 PM – 7:00 PM). During the PM peak, 
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the average speeds are calculated by excluding Lane 1 speeds. This is because, as mentioned 
in Section 2.2.1, the LMM method in this study effectively filtered travel times from Lane 1 
during the PM peak. For a fair comparison, therefore, Lane 1 speeds are also excluded when 
calculating average speeds for “All Lanes” travel times. Further, the ground truth travel times 
are plotted using solid lines, each representing a different percentile. 

It turns out that for the evaluation route, when the same speed data are used, different 
estimation algorithms do not make much difference, under both the free-flow and the 
recurring-congestion conditions.  Theoretically, dynamic travel times should be superior to 
instantaneous travel times, when congestion forms or dissipates rapidly. However, because 
the route travel time is relatively short (15 minutes under free-flow condition, and 35 minutes 
when most congested), and the transition from free-flow to maximum congestion is slow 
(taking almost 2 hours), the results using different estimation algorithms are not significantly 
different. This suggests that under similar circumstances, using the instantaneous travel time 
algorithm is sufficient. 

 

Figure 7: Instantaneous Travel Times Vs. Ground Truth Travel Times 
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Figure 8 Dynamic Travel Times Vs. Ground Truth Travel Times 

 
Figure 9: Linear-Regression Travel Times Vs. Ground Truth Travel Times 
 

Lane 1 

Lane 2 

Lane 3 
All 
Lane 

Lane 1 

Lane 2 

Lane 3 
All 
Lane 
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Our second observation is that data from different lanes affects estimated travel times greatly. 
Since all three estimation algorithms yield similar results, we focus on Figure 8 for 
simplicity.  During the free-flow period, travel times calculated using Lane 1 data are the  
closest to the 15% ground truth line; travel times estimated with Lane 2 data are the closest to 
the 50% ground truth line; and travel times using Lane 3 data are often longer than the 
ground truth (except during 0-7am). This is plausible since the speed in the right lane is 
lower than others, and travelers going through the whole route (who are the most-relevant 
users of the travel-time display) tend to stay in left lanes, except during 0-7am, when a large 
percentage of through traffic are trucks, and they stay in right lanes more often than cars. 
Travel time estimated with data from all lanes (i.e., the average speed) is closest to the 85% 
ground truth in general. If we are mostly interested in displaying the travel time estimated for 
an “average” driver (or more precisely, a driver with median aggressiveness and speed), 
using data from Lane 2 is a better choice than using data for other lanes or for all lanes (for 
free-flow periods).  

During the recurring-congestion period (i.e., PM peak), the percentile ground truth lines 
plotted should be interpreted a little differently. As explained in Section 2.2.1, we processed 
FasTrak data to eliminate outliners, which in this study effectively removed travel time from 
HOV vehicles during PM peak hours. When we turn to the loop-detector data, it is not 
surprising that estimated Lane 1 travel times are way below the plotted percentile ground 
truth lines, because the former is HOV travel times and the latter is for regular lanes. 
Meanwhile, travel times from “Lane 2” underestimate the ground truth travel times during 
this period, while “Lane 3” travel times generally overestimate the ground truth travel times. 
Travel times estimated with “All Lanes” data (note that Lane 1 speeds are excluded during 
this period), however, are the closest to the ground truth lines. The above findings can also be 
observed for the other evaluation days. 

The second observation can also be easily seen from Table 1, which shows the aggregated 
relative errors and accuracy indexes of dynamic travel times for the average and lane by lane 
speeds computed using equations (2.5) and (2.7). In this table, we show in bold text the best 
performance for each time period. We can see, especially through the relative errors, that 
“All Lanes” travel times have the best performance during PM peak period, while “Lane 2” 
travel times are the best for the other periods of the day (except the AM off-peak period 
during which the “All Lanes” error is slightly smaller than that for “Lane 2”). Note that while 
one prefers small relative errors, larger values of the accuracy index represent higher 
possibilities that the loop-based estimated travel times lie in the interval of FasTrak-based 
estimated 15th and 85th percentile travel times and are thus more desirable.  
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Table 1: Relative Error and Accuracy Index of Dynamic Travel Times 

Relative Error Accuracy Index  
Period of 
the Day 

All 
Lanes 

Lane 1 Lane 2 Lane 3 All 
Lanes 

Lane 1 Lane 2 Lane 3 

AM Off 
Peak 0.02989 0.12954 0.06225 0.044 1 0.3333 0.7917 0.9167 
AM Peak 0.13502 0.06701 0.06039 0.26243 0.1667 0.6944 0.6667 0 
Mid Day 0.10898 0.07101 0.02768 0.39492 0.5667 0.6667 0.9667 0 
PM Peak 0.05088 0.34182 0.08531 0.09826 0.3125 0.0417 0.2917 0.1042 
PM Off 
Peak 0.0771 0.05555 0.01893 0.11604 0.551 0.3469 1 0.3061 

 
 

2.4.2 Impact of Different Detector Spacings 

To evaluate the impact of different detector spacings, we only investigate the congested 
period (i.e., the PM peak hours). One may expect that detector spacing does not change much 
of the performance for non-congested periods when vehicles are in (nearly) free-flow. Our 
previous discussions showed that the average travel times estimated using “All Lanes” 
speeds are the closest to the ground truth travel times during PM peak hours (note that Lane 1 
speeds were excluded in this period). Therefore, we focus on average travel times in this 
section. The performance measure we use for this purpose is the aggregated relative error 
defined in (2.5). 

We first show, for each of the four weekdays, the aggregated relative error vs. detector 
spacing, as depicted in Figure 9. Since for each detector spacing scenario (except the baseline 
scenario), we randomly generated 100 detector deployment configurations, we show in each 
figure the minimum, maximum, median, and 25th and 75th percentile relative errors among 
these 100 configurations. Because there is only one baseline scenario (which is currently 
employed in the field), no variation exists for the baseline (i.e., the 0.5-mile spacing) in 
Figure 10. However, its relative error is still presented in the figure for comparison purposes. 

Two observations thus follow. First, the median relative error increases, slowly and nearly 
monotonically, as detector spacing increases. This is intuitive since as the distance between 
detectors increases, less information can be collected regarding the traffic condition, which 
leads to less accurate travel time estimation.  
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Figure 10: Performance of Detector Spacing – Relative Error 
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Figure 11: Performance of Detector Spacing – Variation 

 

The second observation is that as detector spacing increases, so does the variation of the 
relative errors. This can be seen more clearly in Figure 11 which shows the difference of the 
75th and 25th relative errors (i.e., the so-called inter-quartile of relative errors). From Section 
2.3.4, the variation of relative errors for each detector spacing scenario for a single day is 
obtained from 100 detector configurations, which were randomly generated in such a way 
that they are nearly evenly distributed. Since the data used in this study cover only 4 days, 
the fact that a certain configuration of sparse detectors may generate small relative error for a 
day may merely be a coincidence, because such a configuration is picked out of 100 
configurations based on the one-day performance. We cannot conclude from data available to 
this study whether there exists a sparser configuration that generates small relative error over 
longer periods.  
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2.5 Summary of Results 
 

In this chapter, we evaluated performances of a set of “benchmark” methods, i.e. algorithms 
along with specific speed data from dual loop detectors, which estimate route travel times for 
real time applications.  We first proposed a local MAD method to process travel time data 
from probe vehicles. The method is effective since it captures the characteristics of commuter 
trips during both off-peak and peak hours, and allows us to estimate percentiles of travel 
times based on ground-truth data. We verified that during heavily congested peak hours, 
travel time dispersion in a small interval is small.  

We then compared the performances of three travel time estimation algorithms that use speed 
data from loop detectors. We found that when the route travel time is relatively short and the 
transition from free-flow to maximum congestion is slow, the differences using different 
estimation algorithms are not significant, and the instantaneous travel time can be adopted for 
its simplicity. On the other hand, using speed data from different lanes makes significant 
difference. For example, for the evaluation route, we recommend using middle-lane (Lane 2) 
data during free-flow periods and “All Lanes” data during recurring-congestion periods. This 
finding may be site-specific. However for individual routes, one can always archive and 
study historical (average and lane-by-lane) travel times computed from loop detectors, and 
compare them to probe vehicle data. If patterns similar to those shown in this study are 
found, lane-by-lane loop data can be used to improve travel time estimation. This procedure 
is useful for certain real time applications such as displaying travel times on CMS since for 
these applications only a set of handful routes need to be considered. We also evaluated the 
performance of travel time estimates with different detector spacings. We found that both the 
median relative error and the variation of relative errors increase as detector spacing 
increases. 

In this study, we only investigated travel times computed using 5-minute loop detectors on a 
single route for four weekdays. The authors are currently evaluating performances of travel 
time methods using other types of data sources (such as 30-second loop data and speed radar 
sensors) on multiple routes and more evaluation days. Finer resolution data are expected to 
improve the performance of travel time estimation methods during peak periods, while data 
over multiple days can help determine if there exists a sparser detector configuration that 
generates similar relative error as the default configuration over longer periods. Results in 
this regard will be presented in subsequent papers. 
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CHAPTER 3 
USER PERCEPTION AND PREFERENCE FOR DISPLAYING TRAVEL TIMES ON 

CHANGEABLE MESSAGE SIGNS IN THE SAN FRANCISCO BAY AREA 
 

3.1  Introduction 

Changeable Messages Signs on freeways are usually deployed by the Department of 
Transportation of a state as a public service. For travel time display on CMS as a technology 
to be considered useful by travelers and worthy of tax dollars by the general public, it is 
important to understand user perception and preference for displaying travel time on CMS. 
For users to accept and use a technology, the technology must be perceived by the users as 
both useful and easy to use. 
 
Do the travelers consider the travel time display on CMS useful? What contribute to the 
perceived usefulness of the display to travelers? What can be done to enhance the ease of 
use? These are questions that can be best answered through a user survey.  
 
In addition, from a system management perspective, a user survey may also help study the 
impact of CMS on drivers’ route diversion behaviors. Although route diversions do not 
necessarily lead to a reduction in the aggregate traffic delays experienced by all users, 
understanding in what situations a driver will decide to use an alternate route is an important 
building block for studying the impact of CMS on the overall network traffic conditions and 
for choosing the location and message content of a CMS. 
 
During June to November 2007, we conducted a web-based user survey in collaboration with 
the Metropolitan Transportation Commission (MTC) of the San Francisco Bay Area. A 
promotional box was provided on the front-page of MTC’s 511.org website, diverting 
visitors to take the survey. Over 1000 visitors took the survey. In this chapter, we analyze the 
results from survey, and give answers to the questions raised above. 
 
The rest of this chapter is organized as follows. We first provide a literature review to 
summarize related research results. Then we proceed to describe the survey results and 
analysis.  

 

3.2 Related Research 

3.2. 1 User Perception and Preference for Displaying Travel Time on CMS 

Usefulness and ease of use are two dominant factors that affect technology acceptance. Davis 
(1989) has shown that 1) both the perceived usefulness and the perceived ease-of-use were 
significantly and positively correlated with both self-reported current usage and self-
predicted future usage; 2) usefulness has a significantly greater correlation with usage 
behavior than did ease of use; and 3) Perceived ease-of-use might actually be a causal 
antecedent to perceived usefulness, as opposed to a parallel, direct determinant of system 
usage.  
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Travel time display on CMS is useful because its potential impact on travel time reduction 
(when a driver chooses an alternate route) and on travel time predictability (regardless 
whether a driver chooses an alternate route). Small et. al .(2005) found that both travel time 
and its predictability are highly valued by drivers, and there is significant heterogeneity in 
these values. Jackson (1994) argued that driver's willingness to accept and use dynamic route 
guidance (DRG)  in part would depend  its usefulness, which is shaped not only by the 
obvious tangible benefits such as reductions in time and distance travelled, but also by a 
combination of the positive and negative psychological effects which DRG will have upon 
the individual. He urges greater consideration of the possible psychological benefits of DRG, 
such as a means of stress relief.   
 
Chorus et. al. (2005) provided a theoretical framework for accessing the value (or usefulness) 
of travel information. The perceived benefits of ATIS are often loosely defined as “helping 
the traveler to make better choices”, “reduce uncertainty a traveler faces”, and “reduce 
traveler’s anxiety”. This paper provides representation of travelers’ perception of the value of 
acquiring information based on the concepts of initial and remaining uncertainty of choice 
and execution and integrates these with notions of Bayesian perception updating.  
 
Using ordered-logit and regression analyses, Mannering et. al. (1995) showed that traveler’s 
socio-economics, habitual travel patterns, commute congestion levels, and attitudes toward 
in-vehicle technologies are significant determinants of travelers’ importance ratings of in-
vehicle system information.  
 
For travelers, the ease-of-use is a major advantage of CMS compared to other information 
sources such as radio, internet, phone or SMS (text messages). CMS does not require any 
equipment on the users’ side. Using other sources of information is often an interactive 
process and requires user input, which may distract the driver from driving safely. A 
European Commission study (EU 2006) reported that “Regarding the display of Travel 
Times on VMS, 90% of users are satisfied by the clarity of messages. 97% think Travel 
Times displayed on VMS are useful, 93% think the information is reliable and 71% would 
like a permanent display of Travel Times on VMS.” In contrast, “77% of users are satisfied 
by Travel Times given on radio (and another 12% does not listen to radio). 53% are satisfied 
by Travel Times given on Internet (and another 43% do not use internet). Only 9% of them 
are satisfied by Travel Times given on Foninfo (phone service) (with 88% not using this 
service)”. 
 

3.2.2 Impacts of CMS on Drivers’ Route Diversion Behaviors 

It is generally agreed that accurate and reliable information provided by ATIS (Advanced 
Traveler Information Systems, which include CMS as a special case) can benefit the user 
who received such information. For example, drivers may divert to alternative routes if 
severe incidents happened on freeways to avoid congestion if such information is provided 
on CMS. If the ATIS is properly deployed, the user response such as route diversion would 
also lead to improved system performance like reduction in the total system travel time 
(Khattak et al., 1994; Peeta and Ramos, 2006; Chavan et al., 2008). 
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In the literature, the diversion behavior of drivers under the influence of CMS information 
has been extensively investigated. In particular, many studies strived to find the most 
important contributing factors to the diversion behavior and how these factors impact 
diversion. 
 

3.2.2.1 Factors that Impact Route Diversion 

Existing studies have revealed that three major groups of factors do influence drivers’ 
diversion, including trip characteristics, driver characteristics, and information characteristics 
(Khattak et al., 1994; Mahmassani et al., 1990). Trip characteristics represent whether the trip 
is a commuter trip or not, how flexible the work schedule is, the general traffic condition of 
the trip, etc. Driver characteristics include socioeconomics features of the drivers such as 
gender, age, income, etc., as well as drivers’ attitude towards risks (i.e. risk-taking behaviors) 
and their general perception of the information displayed on CMS (whether they feel the 
information is accurate and/or useful). Information characteristics denote the type of 
messages displayed on the signs (e.g. incident alert, general traffic condition or explicit travel 
time information), the accurate and reliability of the information, etc. 
 

3.2.2.2 Modeling Approaches 

Two modeling techniques have been widely adopted to model the relation between the above 
factors and the diversion propensity. The first is linear regression models based on the 
assumption that the dependent variable (the propensity in particular) is a linear function of 
independent variables. These models were used in Mahmassani et al. (1990), Iida et al. 
(1994), Kraan et al. (2000), and Pan and Khattak (2008), to name just a few. In particular, 
Mahmassani et al. (1990) found that the most significant factors are the characteristics of the 
trip and information, while personal characteristics have less significant effects. Their 
findings do not completely agree with other studies, such as those by Khattak et al. (1994) 
and Vaughn et al. (1995) who discovered that driver characteristics are also important 
factors. Linear regression models were also used by Krann et al. (2000) to study how the 
route choice percentage is impacted by the queue length difference between two alternative 
routes. 
 
The second modeling methodology is discrete choice models, such as logit or probit models. 
Uchida et al. (1994) used multinomial probit and logit analyses to study the strategic (long-
term) and tactical (short-term) reactions of drivers under travel time information. Emmerink 
et al. (1996) applied ordered logit models to explore the impact of CMS information on route 
choices. The factors that are considered include demographic and those related to alternative 
routes. They found that women and commuters are less likely to be influenced by traffic 
information, which is not consistent with some of the previous studies. For example, Caplice 
and Mahmassani (1992) reported that women are more likely to divert; Mannering et al. 
(1994) found that commuters are more likely to divert. The ordered logit model was also 
used by Peng et al. (2004) to study the impact arterial CMS. They concluded that arterial 
CMS have more significant impacts than those on freeways. Recently, by comparing three 
types of binary probit models, Gan et al. (2008) found that travel time savings and driving 
ages are the most significant positive factors. 
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Other modeling approaches include hybrid tree models by Lee et al. (2008) and pure 
statistical analysis such as correlation analysis (Kawasaki et al., 2000) and ANOVA 
(ANalysis Of VAriation) analysis (Wang et al., 2006).  
 

3.2.2.3 Data Collection Techniques 

Travel survey has been the dominant means to obtain data in the aforementioned studies 
(Mahmassani  et al., 1990; Khattak et al., 1994; Ullman et al., 1994; Iida et al., 1994; 
Emmerink et al., 1996; Peng et al., 2004; Peeta et al., 2000). Other researchers applied actual 
traffic measurements (Kawasaki et al., 2000) or traffic simulation (Vaughn et al., 1995; 
Diakaki and Papageorgiou, 1997). Uchida et al. (1994) and Kraan et al. (2000) utilized both 
survey data and observed data in their study. Wang et al. (2006) applied all three methods to 
study how the message contents of CMS may impact drivers’ behaviors, although the 
simulation they applied is a lab-driving simulation instead of traffic simulation.  
 
The survey method includes non-committal (stated intention and stated preference) surveys, 
revealed preference surveys, or a combination. The advantage of non-committal survey 
methods is that they can be used to study a wide spectrum of disaggregated factors such as 
personal characteristics which are not easily reflected in traffic data analysis or simulation. 
Also properly designed surveys can help surveyor only focus on polling data on the most 
significant factors. However, as pointed out in many previous studies (Peeta et al., 2000; 
Katsikopoulos et al., 2000), non-committal survey approaches also have drawbacks; in 
particular they may not be able to accurately reveal the actual choices of drivers. For 
example, Chatterjee et. al. (2002) reported that “A survey of drivers' actual responses to a 
message activation showed that only one third of drivers saw the information presented to 
them and few of these drivers diverted, although many found the information useful. Only 
one-fifth of the number of drivers diverted compared to that expected from the results of the 
stated intention questionnaire.” However, “survey data for another UK city with a newly 
installed VMS system showed that the number of drivers diverting due to VMS information 
was very similar to that expected from the results of the stated intention questionnaire.” 
 
As non-committal surveys try to extrapolate results derived from the surveyed group of 
people to a larger population, they typically suffer from the following biases:  
 

1. Self-selectivity bias: Only people with certain characteristics choose to take the 
survey or answer certain questions; 

2. Policy response bias: People may answer strategically in order to affect future policy 
outcome; 

3. Non-committal bias: This arises when the hypothetical choices do not reflect people’s 
budget or other constraints on behaviors, or when cognitive burden may prevent the 
user from recognizing real-world situation that correspond to a hypothetical situation. 

 
Using data collected from the field and conducting revealed preference study, on the other 
hand, are more objective, but are usually aggregated measures (such as volume, delay, etc.). 
Therefore, they cannot be used to link the disaggregated factors (such as age, gender etc.) to 
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actual travel behaviors. As such, important determinants may not have been included. Also, 
in reality, there are always limitations on the coverage or resolution of the collected traffic 
data. Sufficient data are rarely available. In addition, actual choice of people may be habitual. 
 
Simulation studies can provide detailed traffic measurements. For example, Chen and 
Mahmassani (2004) considered travel time perception and learning process, the triggering 
and terminating mechanisms that govern it, and the effect of the foregoing aspects on the day 
to day dynamic behavior of a traffic network, particularly convergence. This type of research 
is primarily exploratory in nature and hardly supported by evidence. One may question the 
practicality of the simulation results. In addition, usually drivers’ personal characteristics are 
not reflected in many simulation models.   
 

3.2.2.4 Specific Considerations on Travel Time Information 

Only a few existing studies did explicitly consider travel time information on CMS (or via 
other ATIS channels). These studies revealed that the travel time difference between 
alternative routes is a major contribution factor to route diversion (Ullman et al., 1994; 
Kawasaki et al., 2000; Krann et al., 2000). For example, Ullman et al. (1994) reported that if 
the difference exceeds certain threshold (15 minutes was found in the study), drivers will be 
more likely to divert. The study by Kawasaki et al (2001) discovered that the travel time 
difference of alternative routes has a positive correlation with the diversion rate, indicating 
that the difference is indeed a significant factor for diversion. These findings are consistent 
with previous theoretical explorations and experimental analyses by Mahmassani and Chang 
(1985, 1986) and Chang (1985), which revealed that in order for drivers to divert, there is a 
threshold in terms of the travel time difference between the alternative routes. Notice that in 
Krann et al. (2000), a proxy of travel times (queue length) was considered instead since CMS 
in the study only displayed queue lengths.  
 
The study by Katsikopoulos et al. (2000) explicitly analyzed the risk-taking behavior of 
drivers under travel time information. They found that drivers tend to reduce both average 
travel times and variations. In case the alternative route has a longer travel time than the 
regular commute route, the risk-taking behavior will be prone; if the travel time on 
alternative route is shorter, risk-averse behavior will be presented. 
 
Most studies pointed out that information accuracy is critical to the diversion behavior. Iida 
et al. (1994) explicitly modeled the accuracy of travel time information in the route choice 
behavior. Warita et al. (2001) found that most drivers (80%) prefer to have travel time 
estimation errors no more than 5 minutes. 
 

3.2.2.5 Summary 

In summary, existing studies on the impacts of CMS information on route diversion 
identified the groups of factors that may impact the route diversion behavior. However, these 
findings are generally not conclusive. Especially, inconsistencies exist regarding what 
parameters are the most significant contributing factors for route diversion and how they 
actually impact the diversion. For example, some argued that female drivers would like to 
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divert more than male drivers under information influence, but others reported the reverse; 
some studies found that familiar drivers are more likely to divert than un-familiar drivers, but 
other studies revealed the opposite. 
 
Beside inherent biases of survey methods, there are multiple reasons for these 
inconsistencies. First, due to data collection limitations, a study can usually cover a subset of 
the above identified factors only. Those missing factors may have significant impacts but 
cannot be easily captured.  
 
More importantly, the inconsistencies may indicate that the impacts of factors are content-
sensitive (e.g. to the area of study). This implies that the results from one site may not be 
straightforwardly transferred to other sites. Therefore these inconsistencies impose 
challenges if one aims to generalize findings and apply the route choice models in a network-
level. This is further exacerbated by the fact that some of the factors such as demographic 
factors are difficult to capture in most network-wide models even micro-simulation models. 
 
As pointed out by Wardman et. al. (1997), one major contributor to the inconsistencies and 
wide ranges of estimates on the effectiveness of CMS in persuading drivers to divert is the 
varying and often unknown proportion of drivers whose destination makes the message 
relevant to them.  
 
Another difficulty in association route choice with travel time display on CMS, or any ATIS 
technology, is that multiple technologies are available to a diverse group of users, and they 
jointly contribute to travelers’ decisions and make isolating the effect of CMS difficult and 
futile.  
 

3.3 Analysis of Survey Results 

The web-based survey was designed to: 1) reveal actual user acceptance and usage patterns 
of travel time display on CMS in the San Francisco Bay Area; 2) uncover user perception and 
preference for various aspects of travel time display on CMS; 3) provide information on 
user’s route diversion behavior.  
 
The-based survey we conducted asks users to provide certain information about themselves, 
the characteristics of their commute, their awareness of travel time display on CMS, their 
perception of the usefulness and contributing factors for the usefulness, their route diversion 
behavior, and their use of other ATIS systems. In total, 1111 people completed the survey. 
Not all questions are answered by every person who completed the survey because some 
questions are follow-up questions to a previous question. The question that received least 
answers has answers from 585 persons. We consider this a sufficient sample size for 
statistical analysis that follows. 
 

3.3.1 Demographic Characteristics 

Since most people who took the survey were diverted by a promotional box from the front 
page of 511.org, it is not unreasonable to assume they are more likely to use 511.org than the 
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general group of all drivers in the San Francisco Bay Area, although they may not be 
representative of people who visited 511.org.  
 
Among the 1111 people who completed the survey, 90 do not commute. We call the other 
1021 persons commuters. Among these commuters, 181 (18%) never notice travel time 
messages on CMS during their commute.   Demographic characteristics for the commuters 
who have noticed travel time messages on CMS are as follows. 
 

 

Figure 12: Gender Distribution (of Commuters Who Have Noticed Travel Time Messages on 
CMS) 

 
•  

•  
 
 
 
 
 
 
 
 
 
Figure 13: Income Distribution (of Commuters Who Have Noticed Travel Time Messages on 
CMS) 
 

 
Figure 14: Age Distribution (of Commuters Who Have Noticed Travel Time Messages on CMS) 
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The apparent lack of respondents over 65 years old can be explained by that older people do not 
commute, and possibly those who do are less likely to visit 511.org.  It is also possible that they 
are less likely to notice the CMS messages.  

 

 
 

Figure 15: Education Level Distribution (of Commuters Who Have Noticed Travel Time 
Messages on CMS) 

 
3.3.2 Commute Patterns 

Among the 1111 people who completed the survey, their commute frequency is as follows. 

 

 
 

Figure 16: Commute Frequency of Survey Respondents 
 
Among the 1021 survey respondents who commute, the distribution of the time they spend 
driving on an average day is as follows. 
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Figure 17: Time Spent Driving on an Average Day 

 
The distribution of the length of commute routes is as follows. Note this distribution gives equal 
weight to each commuter, without considering how frequently a commuter commutes. So this is 
not a distribution of the length of all commute trips. 

 

 
Figure 18: Distribution of Commute Route Length 

 

A commuter may or may not be able to arrive late at his destination, with or without a severe 
consequence. The distribution of their schedule flexibility is as follows. 
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Figure 19: Commuter Schedule Flexibility 

 
Commuters also answered questions regarding their commute origins and destinations. Major 
cities (reported over 50 times or more as origins and destinations) are: San Francisco (241 times as 
origins, 210 times as destinations), Oakland (90, 98), Richmond (30, 22), Berkeley (44, 48), 
Redwood City (36, 14), San Jose (43, 33). There is obvious origin-destination imbalance 
geographically. The following cities in the Peninsular and South Bay are far more often mentioned 
as destinations than as origins: South San Francisco, Foster City, Redwood City, Palo Alto, 
Redwood City, Mountain View, Menlo Park, Burlingame, Santa Clara, Sunnyvale, San Jose, and 
Cupertino. The following East Bay cities are far more often mentioned as origins than as 
destinations: Sacramento, Fairfield, Vacaville, Vallejo, Antioch, Concord, Pleasant Hill, Alameda, 
San Leandro, Castro Valley. This is consistent with our observation and experience of commute 
traffic patterns. 

 
The major freeways that are used by 5% or more commuters are as follows. 

 

 
 

Figure 20: Percentages of Commuters Who Use Certain Freeways 
 

Note the sum adds up to over 100% as a trip may use multiple freeways. 
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3.3.3 Perception of Availability and Relevance of Travel Time Display on CMS 

Among the 1021 commuters, the frequency they notice travel time messages on CMS is as 
follows. 

  

 
Figure 21: Frequency of Commuters Noticing Travel Time Messages on CMS 

 
Figure 21 shows that travel time on CMS has reasonably good coverage in the San Francisco Bay 
Area. There is strong positive correlation between the frequency of noticing the messages and the 
commute route length. According to Figure 16, 13% of commuters have a commute route length 
of less than 10 miles. Considering part of that 10 miles are on local streets, many of them would 
never see a CMS on their route. 

Among the 840 commuters who notice travel time messages on CMS, the perception of the 
relevance of shown messages to the commute route is as follows.  

 

 
 
Figure 22: Relevance of Travel Time Messages to Commute Route 

 
Although we did not ask for reasons for the travel time message not being relevant, the two figures 
below show, among the two groups who consider the messages relevant or not relevant, the 
percentages with different commute frequency and different commute route length.  Among those 
who consider the messages not relevant to their commute routes, we see that a much larger 
percentage travel less frequently and a much larger percentage travel a short distance.  
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Figure 23: Frequency of Noticing TT on CMS vs Relevance of TT Message 
 

 
 

 
Figure 24: Commute Distance vs Relevance of TT Message 
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3.3.4 Perception of Accuracy and Usefulness of Travel Time Display on CMS 

596 survey correspondents commute, have noticed travel time messages on CMS, and 
consider the messages relevant to their commute route. Their perception of the accuracy of 
the displayed travel time estimate is shown in the figure below. Notably, 63% of surveyed 
commuters believe the estimates are accurate within 5 minutes. 
 
 

 
 
Figure 25: Perceived Accuracy of Travel Time Display on CMS 
 
The 596 commuters were also asked to rate the usefulness of displayed messages on a scale 
between 1-5, with 1 being not useful at all and 5 being very useful.  The result is shown in 
the figure below.  
 
 

 
 
Figure 26: User Perception of the Usefulness of Travel Time Display on CMS 
 
Compared to a survey conducted in Caltrans District 7 prior to 2007, this result is highly 
encouraging. In the District 7 survey, 60% of respondents are against displaying travel time 
on CMS. Major complaints were slow down due to the signs, hard to read due to sunshine, 
and accuracy. Our survey shows that an overwhelming majority of respondents consider the 
display useful. 
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Figure 27: Impact of Estimate Accuracy on Perceived Usefulness 
 
It is apparent from Figure 27 that the perceived accuracy of travel time estimate greatly 
affects the perceived usefulness of travel time display on CMS. However, even when the 
perceived accuracy is within 10-15 minutes, the vast majority (over 80%) of the commuters 
who hold the accuracy perception still regard the travel time display on CMS as useful.  
  
In a previous meeting to discuss displaying travel time on CMS, representatives from 
Caltrans headquarters and districts hold different positions on whether alternative route travel 
time information should be displayed. Proponents of displaying travel times for alternative 
routes believe that the ultimate goal of providing travel information is to empower travelers 
to make better choices and decision, and not displaying alternative route travel time will not 
enable drivers to make any decision. The opponents believe displaying alternative route 
information is not a priority, partially because doing so may be too complicated as many 
alternative routes may be available.  
 
In our survey, we asked users the principal reason for the usefulness of travel time. The 
results are shown in the figure below. 
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Figure 28: Principal Reasons for Usefulness of Travel Time Display on CMS 
 
 
First of all, enabling route choice is the biggest reason for the usefulness of travel time 
display on CMS. However, the display also helps drivers to plan head (e.g. call in the 
expected arrival time), or gives the driver peace of mind even if no decision or choice is 
taken. Among the 9% who specify “Other” as the principal reason, the reasons they provided 
are mostly being able to call in late and knowing what to expect. Very few mentioned route 
choice. Only one mentioned ability to plan a mode change to BART. 
 
The above results indicate that benefits besides route choice are as important as route choice 
to users when they consider the usefulness of travel time display on CMS. Even if there is no 
route choice, it is beneficial to have travel time display on CMS if there is great variability 
and uncertainty in traffic condition on a freeway segment. 
 

3.3.5 Commuters’ Usage of Other ATIS Systems 

Notably, half of the surveyed commuters report that they are aware of that the travel time 
information displayed on CMS is generated by the Bay Area’s 511 system.  This suggests that 
they are most knowledgeable than the general public regarding traffic information sources and 
more active in seeking traffic information.  
Although it is reasonable to believe that most surveyed commuters are directed to the survey were 
diverted by a promotional box from the front-page of 511.org, their reported usage of the 511 
phone service or the 511.org website to obtain travel time estimates is not great, as shown in the 
figure below. This suggests that the usage of the phone or website for travel time information by 
the general public may be much lower. In light of this, information services such as CMS that 
requires no user input or interaction are of great value. 
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Figure 29: Usage of 511 Phone or Web Service for Travel Time Information 
 
 

3.3.6 Commuter Preference for Travel Time Display Format and Update Frequency 

A large majority (71%) of surveyed commuters prefer travel time estimates be displayed as an 
exact number in minutes instead of a range. The remaining 29% prefer a range. It is indeed 
difficult to interpret what the range mean exactly, and displaying a range will take more display 
space and less legible. Therefore, we suggest that the travel time estimate be displayed as an exact 
number of minutes. 
When asked about what they feel about the current update frequency of travel time display on 
CMS, the surveyed commuters reported the following: 
 

  
Figure 30: Commuter's perception about travel time update frequency 

 
When asked to choose between an update frequency of every 2 minutes and a frequency of every 
minute, 63% of the surveyed commuters chose every 2 minutes. If the time is updated too 
frequently, it may confuse commuters. Thus an update frequency of every 2 minutes is 
recommended. 
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3.3.7 Impact of Travel Time Display on Route Diversion 

The 840 commuters who have noticed travel time messages on CMS during their commute were 
asked whether they are aware of alternative routes for their typical commute. 79% answered yes 
and 21% said no.  Thus for most people, route diversion is a real possibility. 

However, for those commuters who are aware of alternative routes, the distribution of the extent 
to which they rely on the CMS travel times to know when to take another route is shown in the 
figure below. 

 

 
Figure 31: Extent to Which Commuters Rely on CMS Travel Times for Route Diversion 

 
Only a very small percentage (13%) totally depends on CMS travel times.  

For those who report not relying on CMS travel time at all, their diversion behaviors are given as 
following: 

• Divert only when there is big accident or total blockage; 
• Make divert decision by using 511, personal traffic information device, etc. 
• Divert based on experience (Friday, big games); 
• Divert when alternative route has bridge toll; 
• Divert when need to run errand on alternative route; 
• Work at home if there is traffic; 
• Cannot divert because CMS is too late to affect diversion;  
• Never divert; 

By far the biggest behavior pattern is that many people will divert only in extreme traffic 
conditions, such as road closure or very heavy traffic. Even for people who totally depend on 
CMS travel times for diversion decisions, many reports they will divert only in accidents or very 
heavy traffic. This suggests a large threshold for the difference between expected route travel 
times needs to be reached before commuters switch from their usual routes.  
The above results on diversion decision are for survey respondents who have noticed travel time 
messages on CMS during their commute, and who are aware of alternative routes and in general 
more savvy and active in seeking traffic information. The effectiveness of CMS alone in 
persuading typical drivers to divert is likely to be small. 
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3.4 Summary of Results 

The major results we obtain from the survey are the following: 
1. The San Francisco Bay Area achieved reasonably good coverage of travel time display on 

CMS; 
2. Displayed travel times are relevant to most commuters’ commute route, and among those 

who consider the messages not relevant to their commute routes, we see that a much larger 
percentage travel less frequently and a much larger percentage travel a short distance; 

3. The majority of surveyed commuters believe the estimates are accurate within 5 
minutes, and an overwhelming majority regard the travel time display as useful;  
 

4. Perception of accuracy of estimated travel time greatly affects the perceived 
usefulness of travel time display. However, even when the perceived accuracy is 
within 10-15 minutes, the vast majority (over 80%) of the commuters who hold the 
accuracy perception still regards the travel time display on CMS as useful; 

 
5. Benefits besides route choice, such as being able to plan ahead and having peace of mind, 

are as important as route choice to users when they consider the usefulness of travel time 
display on CMS.  

6. Users need not to make a choice or decision to benefit from CMS travel time display. 
Even if there is no route choice, it is beneficial to have travel time display on CMS if 
there is great variability and uncertainty in traffic condition on a freeway segment. 

 
7. Commuters use many sources for travel information. Travel time display on CMS requires 

no user input or interaction but offers great value compared to other services that require 
input and thus are used infrequently, by few, and unsafely. 

8. Estimated travel time should be displayed as an exact number of minutes. An update 
frequency of every 2 minutes is recommended. 

9. For most people, route diversion is a real possibility. However, a large threshold for the 
difference between expected route travel times needs to be reached before commuters 
switch from their usual routes. 

10. The effectiveness of CMS alone in persuading drivers to divert is likely to be small. 
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CHAPTER 4 
CMS IMPACT ON NETWORK-WIDE PERFORMANCE AND OPTIMAL CMS 

CONFIGURATIONS FOR DISPLAYING TRAVEL TIMES 
 

4.1 Background 
 
For a given CMS, there are usually possibilities to display travel times for multiple 
destinations and for each destination, there are multiple routes for which travel times can be 
posted. It is very likely that different combinations of locations, destinations and routes may 
result in different system performances. Therefore, the optimal CMS configuration problem 
is to determine, under normal traffic conditions, the best CMS locations and the travel time 
destinations and routes on each CMS. The objective is to optimize certain network-wide 
performance (such as minimizing the total system travel time). We also assume that all 
drivers are commuters, which is roughly the case for AM and PM peak hours. 
 
Our proposed modeling framework for the problem contains two major components. The 
first one is to evaluate the network-wide performance for a given CMS configuration (i.e. 
locations and travel time destinations and routes). Based on this network model, the second 
component exploits the performances of different configurations and determines the 
“optimal” configuration. Before proceeding to describe our work, we summarize the 
literature below. 
 
4.1.1  CMS Impacts on Network-Wide Performance 
 
4.1.1.1 Traffic Data Analysis Method 
 
There are many studies in the literature about how CMS information may impact network-
wide performances. The most straightforward evaluation method is to analyze traffic data 
collected before/after the installation of CMS. For the newly installed 14 CMS in Amsterdam 
in the Netherlands, Kraan et al. (2000) evaluated their impacts on network-wide 
performances during peak hours and recurrent congestion. Total vehicle-miles-traveled 
(VMT), queue length, and travel time were used as performance measures for the evaluation. 
It was shown that after installing CMS, the total congestion decreased slightly, traffic 
performance increased slightly and travel time reliability also increased. The authors thus 
concluded that CMS has a positive impact on network-wide performances. The CMS 
however did not display travel time information during the evaluation. 
 
4.1.1.2 Network Optimization Models 
 
Network optimization models have also been developed to evaluate the network-wide 
performances of CMS (e.g. Peeta and Gedela, 2001). Lam and Chan (1994) modeled the 
CMS travel time information via both static and time-varying stochastic traffic assignment. 
Their key assumption is that drivers generally have perception errors regarding travel times. 
However, if travel times are posted on CMS for a given route, the perception over the route 
will be reduced to zero. It was found in the study that CMS affect more significantly the 
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congested periods; if travel time information is provided on CMS for some OD pairs, the 
average trip times for these ODs can be reduced significantly. The study however did not 
consider stochasticity of the network such as travel time variability. In addition, the 
assumption that CMS information can completely eliminate drivers’ perception error may 
need to be relaxed. 
 
Network models have also been proposed to study ATIS (such as in-vehicle route guidance 
systems), a broader concept than CMS. Since ATIS usually has certain market penetration, 
most studies applied the so-called multi-class equilibrium models (Daganzo, 1983). That is, 
drivers are divided into (at least) those equipped with ATIS services and those who are 
unequipped. Usually equipped drivers are assumed to have perfect information and thus 
follow deterministic user equilibrium. Unequipped drivers, on the other hand, do not have 
perfect information and follow stochastic user equilibrium. Most of these studies adopted 
static traffic models and did not consider network stochasticity (Kousopoulos and Lotan, 
1990; Maher and Hughes, 1995; Van Vuren and Watling, 1991; Yang, 1998; Lo et al., 1999). 
Yin et al. (2002), on the other hand, explicitly considered dynamic user equilibrium and 
travel time uncertainty. To capture drivers’ attitude regarding travel time variability, the risk-
taking behavior (in terms of how they deal with travel time uncertainty) was explicitly 
modeled. It was found that by assuming different risk taking behaviors (risk-averse, risk-
prone or risk-neutral), the impact of ATIS will vary significantly; in certain cases, ATIS may 
worsen the system performance. This shows that for networks with large travel time 
variations, considering risk-taking behavior is necessary. 
 
CMS information however is significantly different from other ATIS in at least one aspect. 
That is, one can reasonably assume that all drivers can access the information as long as they 
pass by the signs. Therefore, there is no need to divide drivers into groups, which implies that 
a single user class may suffice (e.g. the study by Lam and Chan, 1994). Also, since previous 
studies on ATIS have clearly indicated that in order to properly model the impact of CMS on 
networks with non-negligible travel time variability (which is true for most urban areas), one 
needs to capture both the network stochasticity and the perception errors of drivers. This 
results in the so-called Stochastic Network – Stochastic User Equilibrium (SN-SUE), which 
was first introduced by Mirchandani and Soroush (1987) and subsequently studied by Tatinei 
(1996), Tatinei et al. (1997), and Chen et al. (2002). In our study, SN-SUE will be adopted to 
evaluate CMS impacts in a network level. 
 
4.1.2 Optimal CMS Locations 
 
Although instructions on operational issues for CMS have been developed by MUTCD and 
other federal- and state-level guidelines, they usually cannot provide detailed guidance on 
optimal CMS configurations to effectively convey information (Chiu and Huynh, 2007). 
Specific studies for optimal CMS configurations are also sparse in the literature: only a few 
researchers addressed the optimal CMS location problem under incident scenarios (Abbas 
and McCoy, 1999; Chiu and Huynh, 2007). In particular, Abbas and McCoy (1999) proposed 
an analytical modeling framework to determine the optimal CMS locations for incident 
management. The potential benefits of CMS for displaying incident information were 
characterized by reduction of delay and accidents in freeway upstream and downstream of 



 44 

the incidents and that in the alternative route. The potential benefits were further adjusted by 
the proportion of traffic passing through the CMS that can actually divert. The model was 
solved using the Genetic Algorithm and the optimal locations were ordered so that a phased 
implementation of CMS installation was possible. The final selection criteria were based on a 
benefit/coast analysis: the (monetary) benefits that CMS can bring (by delay and accidents 
reduction) and the costs of installing these CMS. The study, however, did not consider the 
impact of the information on the route diversion behavior and the resulting network traffic 
condition changes.  
 
Chiu and Huynh (2007) proposed methods to determine strategic CMS locations in a network 
level by considering stochastic incident occurrence. The authors argued that 1) CMS 
information impacts motorists’ en-route route choices instead of pre-trip choices, and 2) 
dynamic traffic assignment concept is more appropriate to model such en-route choices since 
incident information may only be valid and displayed for a short period of time. Due to the 
complex interactions of user-to-user and user-to-system, CMS impacts on route choices were 
modeled using the DynaSmart-P simulation tool (Mahmassani, 2001). The problem was then 
formulated as a non-close-form minimization model, which was solved by the Tabu search. 
The authors claimed that the optimal results obtained by the model make sense. One major 
finding of the study is that ATIS and CMS nullify the marginal benefits of one another. This 
implies that one needs to consider the inter-dependency among different information 
strategies when evaluating the benefit of ITS technologies. The authors also recommended 
that users’ choice under imperfect information be considered for future research, which is 
similar to the findings in Yin et al. (2002). 
 
In summary, existing studies mainly focus on the determination of optimal CMS locations 
under incident scenarios. There is no modeling approach for finding optimal CMS 
configurations (including not only locations but also destinations and routes) for displaying 
travel times under recurrent congestion. This is particularly true for heavily congested urban 
areas (such as the San Francisco Bay Area) where travel time uncertainty is significant and 
needs to be considered. It is our understanding that under our specific consideration, previous 
assumptions made for incident scenarios may not hold or can be relaxed in certain sense.  
 

4.2 The Network Model to Evaluate CMS Impacts 
 
For the network model, several features distinguish our study from previous research. First, 
since the CMS travel time system is specifically modeled, we need to consider not only CMS 
locations but also travel time destinations and routes, which were not captured in previous 
research. Second, we focus on normal traffic conditions such as recurrent congestion, 
whereas most previous research on optimal CMS locations was concerned with incident 
scenarios (Abbas and McCoy, 1999; Chiu and Huynh, 2007). The reasons we study normal 
conditions are that 1) usually travel times are displayed only under normal traffic conditions 
since when incidents happen, incident alert messages will be posted instead, and 2) from our 
travel surveys, we found that travel times on CMS do impact positively drivers’ route choices 
and we thus postulate that they should also help improve system performances.  
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The fact that we only focus on normal traffic conditions may relax previous assumptions 
made particularly for incident scenarios. Especially, the major argument for applying 
dynamic traffic assignment is that incident information is only valid for a (possibly short) 
duration of time (Chiu and Huynh, 2007). Depending on when a driver arrives at a CMS 
node upstream of the incident, he/she may or may not see the message. Static traffic 
assignment could not capture this difference. However, in our study, we assume travel time 
information is displayed all day (for example it is activated from 5:00 am to 9:00 pm on 
weekdays in the San Francisco Bay Area). Therefore, all drivers will see the information as 
long as they pass the signs. Under the assumption that the displayed travel times match well 
with (expected) actual travel times, commuters will learn and adjust their choice behavior. 
The decision can then be made pre-trip instead of en-route. This indicates that a static model 
may also be acceptable for our study. We note however that a dynamic model may do better 
and we will investigate this issue in future studies. Lastly, we consider heavily congested 
urban areas where travel time variability cannot be neglected. Therefore, we will explicitly 
consider divers’ risk taking behavior in the modeling framework. 
 
As a result, we formulate the network model as a SN-SUE problem for which both network 
travel time variability and drivers’ perception errors can be captured. One critical issue here 
is to model the impact of CMS on drivers’ route choices. In this study, we assume that 
drivers have regular perception errors and CMS will help reduce the error to certain level. 
Both the regular and CMS-impacted perception errors will be estimated from traffic data 
(such as travel times) collected from the field. Details of how to formulate and solve SN-SUE 
problems can be found in Mirchandani and Soroush (1987), Tatinei (1996), Tatinei et al. 
(1997), and Chen et al. (2002). In the following, we only illustrate how CMS influences 
drivers’ travel time perceptions. 
 

 
Figure 32: CMS Impact on Travel Time Perception 
 
 
Figure 32 depicts two CMS installed at node i1 and i2 respectively. CMS1 displays travel 
times to destination node d1 via a path including links 2, 3, and 4 (shown as the bold solid 
arrows), whereas CMS2 shows travel times to destination node d2 via the path 6, 3, and 7 
(shown as the bold dashed arrows). We assume drivers’ regular (i.e. with no information 
provided) travel time perception errors over links are  (modeled as a 
percentage). When CMS travel time information is provided, perception errors become 
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. Here we assume drivers have a uniform perception; in other words, 
when CMS provide travel time information, all drivers reduce their perception errors to the 
same level. This assumption is reasonable since for a given region, travel times on CMS are 
usually produced by a single calculation system which has a specific accuracy level 
depending on the utilized data sources and algorithms. As commuters interact with the travel 
time information, they will learn and build their perception regarding the accuracy level of 
the system. As a result,  may be approximated as the drivers’ perception regarding the 
travel time accuracy posted on the signs, which can obtained from travel survey data. Note 
that we assume  in general so that travel time information on CMS always reduces 
drivers’ perception errors. 
 
In Figure 32, after the two signs are installed, drivers’ perception errors for links 1, 5, and 8 
still remain as , , and  respectively. However, for other links, the perception error is 
reduced to . Notice that whether a traveler is impacted by the travel time information on a 
CMS depends on whether the traveler passes by the CMS location. Therefore the actual path 
of each individual traveler has to be traced. In other words, the SN-SUE model will be 
implemented in path-based. 
 
Note that the above scheme guarantees consistency for drivers traveling between different 
OD pairs or routes. For example, drivers from i1 to d1 and i2 to d2 will all traverse link 3. 
Although link 3 is covered by both CMS1 and CMS2, its unique perception error  
guarantees that drivers have the same perception error over the link no matter where they are 
from or heading to. Another observation is that the scheme can capture CMS’ impact on 
destinations that are implicitly or partially covered by CMS information. For example, d3 is 
implicitly covered by both signs in Figure 32 for commuters who know that d3 is actually on 
the routes displayed on the signs. This fact can be captured by our modeling scheme since for 
drivers from i1 to d3 (or i2 to d3), their perception errors over links 2, 3, and 6 will be reduced 
to . This is also true for destinations that are partially covered by the signs, such as d4 in 
Figure 32. In this case, drivers from i1 to d4 will have reduced perception errors for links 2, 3, 
and 4, while maintain the regular perception for link 8 which is not covered by the signs. 
 
4.3 Bi-Level Model to Determine Optimal CMS Configuration 
 
Assume a given traffic network can be represented as G(N, A), where N is the set of nodes 
and A is the set of links. We use index  to denote a node and  to denote a link. 
Further,  a subset of N and for each node , a CMS may be installed or an 
existing CMS may be activated to display travel times. In other words,  is the set of 
potential CMS locations (nodes) and  is called a CMS node3. For each CMS node 

, there is a set of destination nodes  for which travel time may be displayed; for 
each destination node , we further assume that there are multiple (could be one) 

                                                
3 If an existing or newly installed CMS is not exactly located at a network node, an immediate node can always created at the location of the CMS. This 
way, a CMS is always on a network node. 
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possible routes (denoted as the set ) that can be displayed. In this project, we 
assume , , and  are given. In reality, this is usually the case 
since traffic operations already have some potential CMS locations in mind, and for each 
potential location, they often have candidate destination nodes and routes to display travel 
times. 
 
We define a vector of binary variables  indexed by i to indicate whether a CMS is installed 
or activated at node  ( =1 for yes, and 0 otherwise). Assume there are at most K 
CMS that can be installed or activated for travel time display, we then have: 
 

.          (4.1) 

Denote another vector of binary variables  which can be indexed by i, d and p. In 
particular, =1 represents that a CMS is installed (or activated) on node  that 

displays travel time information for destination  and route , and =0 
otherwise. In practice, there are a maximum number of lines that can be displayed on CMS, 
denoted as M. Then we have: 
 

.        (4.2) 

 
Equation (4.2) requires that if CMS is not installed at location i, =0, implying that 

. Otherwise, we have  which satisfies the maximum 

number of lines constraints on each CMS. Notice that (2) allows the case when =1 and 
. However, as will be shown in model (3) below, the objective 

function guarantees that this is not possible. 
 
Hence, a given  pair represents one possible CMS configuration if it also satisfies 
equations (4.1) and (4.2) above. The impact on the network can be obtained by solving the 
SN-SUE problem under the configuration. Clearly, for different pairs, the impact may be 
different and one may want to find the one with the most desirable performance. In this 
project, we consider both expected total system travel time and deployment cost of CMS. 
Denote  the link flow solution of SN-SUE for a given pair, we may formulate 
the optimal CMS configuration problem as the following bilevel model: 
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Here (4.3-a) is the objective function which is a weighted summation of expected total 
system travel time (the first term) and total deployment cost (the second term). The second 
term guarantees that if , we must have =0. This implies that if 

=0, then at least one of the must be 1. The weight  denotes the 
“value-of-time” and  is the deployment cost at CMS node i. It may be the construction cost 
if a new CMS is to be installed or activation cost if a CMS already exists. (4.3-d) explicitly 
requires that the resulting flow x must satisfy SN-SUE, which is itself an optimization 
problem. Constraint (4.3-d) makes model (3) a bi-level problem. 
 
4.4  Case Study I: A Hypothetical Network 
We present an illustrative example in this section. The example shows how the model can be 
used to 1) evaluate the impacts of CMS travel times on drivers’ route choice behaviors, and 
2) how to determine the optimal CMS locations and displaying destinations/routes. 
 
Figure 33 depicts the example network with 5 nodes, 5 links, and 1 OD pair from node 1 to 5. 
There are two routes between the origin and destination: 1->2->4->5 (i.e. links 1, 3, 5) and 1-
>2->3->4->5 (i.e. links 1, 2, 4, 5).  
 
 

 
Figure 33: Layout of the Test Network 
 
 
The travel time function of links is assumed to be the BPR function as follows: 

,         (4.4) 
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where τ is the link travel time, a is the free flow travel time of the link, f is the link flow, C is 
the link capacity, and p and b is a coefficient. The values of these parameters (except flow f) 
for all links of the network are given in the table below. 
 

         Table 2: Parameters of the Example Network 

Link(from.to) a p b Capacity 
1.2 15 0.15 4 100 
2.3 20 0.15 4 50 
2.4 30 0.15 4 50 
3.4 10 0.15 4 50 
4.5 15 0.15 4 100 

 
 
4.4.1 Impacts of CMS Travel Time on Drivers’ Route Choice 
 
It turns out that the impacts of CMS travel times on drivers’ route choices depend on 
characteristics of the network (i.e. geometry of the network such as number of routes and 
lengths of the routes), traffic conditions (mean travel times, travel time variations), and 
characteristics of drivers (perceptions of travel times and risk-taking behaviors regarding 
travel time variations). The impacts of CMS travel times are a complex interaction of these 
factors. For the given example network, traffic conditions and driver characteristics will play 
the central role. 
 
4.4.1.1 Deterministic Network 

This is the most basic case, in which no stochasticity was assumed on link travel times or 
drivers’ perception errors. That is, the network is deterministic. In this case, since the two 
routes have exactly the same length, the traffic should be evenly distributed over the two 
paths. The proposed model assigns 40 trips to each route, indicating that it works properly for 
the base case. Note that this is true for all three risk-taking behaviors. 
 
4.4.1.2 Stochastic Network without CMS 
This scenario tests whether the stochastic assignment component of the model works 
properly. First, we assume the perception error follows a normal distribution; the mean is 
sampled from a zero-mean normal distribution and the variance is sampled from a 
Gamma distribution , where , , are parameters. In particular, and  are 
the shape and scale parameters of the Gamma distribution respectively. In this scenario, we 
use the same set of parameters for all links: , , . 

 
To illustrate how different risk-taking behaviors react to travel time distributions (i.e. risks), 
we assume the (actual) link travel time variation follows Gamma distribution , 
where  are the shape and scale of the Gamma distribution respectively. All links except 
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link 3 (2->4) follow the same Gamma distribution with . For link 3, the 
parameter values are: . Since the mean of a Gamma distribution is the 
product of its shape and scale, i.e.  and the standard deviation is , our setting 
implies that the distribution of travel time variation for link 3 has much larger mean and 
standard deviation. As a result, the sampled travel time variation should be generally larger 
for link 3 compared with other links. In other words, traveling on link 3 represents “more 
risks.” 
 
Column 2 of Table 3 depicts the flow on link 3 (2->4) of running the model using the above 
setting without activating CMS. The numeric values in the parentheses show the percentage 
of the total demand that was assigned to link 3. The three rows are for the three risk-taking 
behaviors (i.e. assuming drivers have same risk-taking behavior in each case). As we 
discussed previously, under no travel time variation and perfect perception (deterministic 
case), flow should be evenly distributed between the two routes, resulting in 40 on link 3. 
Under the stochastic assignment, the result slightly favors link 3 as indicated by the fact that 
for risk-neutral case, the flow assigned to link 3 is 43.88 which is slighter larger than 40. As 
risk-averse drivers generally dislike taking risks, fewer drivers will select link 3. 
Consequently, only 39.04 were assigned to link 3 for risk-averse drivers. For risk-prone 
drivers, nearly 60% of drivers chose link 3 as they prefer risks during their driving. 
 
Table 3: Comparison of Risk-Taking and CMS Impacts 

 Flow on Link 3 (W/O CMS) Flow on Link 3 (With CMS) 
Risk-Averse 39.04 (48.8%) 35.0 (43.8%) 
Risk-Neutral 43.88 (54.9%) 40.7 (51.9%) 
Risk-Prone 46.45 (58.1%) 45.0 (56%) 
 
The above table shows that the model can properly capture the risk-taking behaviors of 
drivers during the assignment process. 
 
4.4.1.3 Stochastic Network with CMS 

To show the impacts of CMS, we assume a CMS is installed at node 2. Further assume the 
CMS displays travel times from node 2 to destination 5 for the route that contains links 3 and 
5. As what we assumed in this study, due to the installation of the CMS and its information 
display, the perception error of drivers to links 3 and 5 will be reduced. In this scenario, we 
assume the reduction is 80%, i.e. the perception error of link 3 or 5 is 1/5 of its normal 
perception errors. 
 
The results of the assignment are given in the third column of Table 3.  We can see that in 
this case, only 43.8% of drivers chose link 3 if they are risk-averse. This intuitively makes 
sense as risk-averse drivers prefer less risk. Risk-prone drivers, on the other hand, prefer link 
3 as they favor risks. As a result, 56% of risk-prone drivers chose link 3. For risk-neutral 
drivers, they are indifferent to risks and therefore they were almost evenly distributed 
between links 2 and 3 (about 51.9% to link 3). Notice that in this scenario, the results look 
more symmetric, i.e. with risk-neutral result being closer to 50%. This is because drivers’ 
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perception errors to the travel time variation of link 3 and 5 are reduced, or in other words, 
drivers are more certain that link 3 has more risks. This leads to more informed decisions to a 
driver based on his/her risk-taking behavior. Therefore, the distinction among the three risk-
taking behaviors is more distinct. 
 
4.4. 1. 4 Major Findings 

As a summary, the impacts of CMS on route choice behaviors depend on 1) geometry of the 
roadway network, traffic conditions, and drivers’ perceptions and risk-taking behaviors. For a 
given network and traffic condition, drivers’ risk taking behavior will play a central role in 
the route choice process. 
 
4.4.2 Optimal CMS Configuration 
 
The optimal CMS configuration is a function of characteristics of the network, traffic 
conditions, characteristics of drivers, and CMS activation or construction cost. For the 
example network, we only focus on the optimal route to display on CMS. 
 
In this case, we only assume a CMS will be installed at node 2, but will not specify to which 
route the travel time information will be displayed. Rather we will run an optimization 
routine to determine the “optimal” route. The optimization routine is based on simulated 
annealing, which is a heuristic-based optimization algorithm. For more details, one can refer 
to Kirkpatrick et al. (1983) and Friesz et al. (1992). 
 
To determine the optimal CMS configuration, we need to consider the cost of installing a 
CMS, and the value of time. In this study, we assume the value of time factor , which 
may be interpreted as “the value of one minute is 2 dollars.” We then set the CMS 
installation cost is 3. Notice that this value may be OK if we activate an existing CMS for 
displaying travel times, but may not be realistic for installing a new CMS. However, for 
illustrative purposes, we first set this value to be small. We will then change it and see how it 
may impact the optimal CMS configuration. 
 
Table 4: Optimal CMS Configuration 
 Optimal Route (link 

list) 
Risk-Averse 2, 4, 5 
Risk-Neutral 3, 5 
Risk-Prone None 
 
Table 4 shows that for different risk-taking behaviors, the optimal routes to display travel 
times are different: for risk-averse drivers, showing travel times for the route comprising 
links 2,4,5 is most beneficial; for risk-neutral drivers, showing travel times for route (3,5) is 
most preferable. For risk-prone drivers, however, no travel time information should be 
displayed to obtain the best system performance. The risk-taking behaviors here mainly 
determine which route should be chosen to display travel times. 
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4.4.2.1 Impacts of CMS Construction Cost 

Besides the drivers’ risk-taking behaviors, the cost for constructing or activating CMS plays 
a critical role. To see this, we increase the cost of CMS from 3 to 30. In this case, the model 
suggests no route should be selected to display travel times, i.e. the CMS should not be 
installed or activated. This clearly shows that the CMS construction cost determines whether 
a CMS should be installed or not. 
 
4.4.2.2 Major Findings 
In summary, the optimal CMS configurations are determined by roadway geometry, traffic 
conditions, driver characteristics, and CMS installation/activation cost. In particularly, CMS 
construction cost determines whether a CMS should be installed/activated and drivers’ risk-
taking behaviors determine which optimal route should be selected to display travel times. 
 

4.5 Case Study II: SF Bay Area Freeway Sub-Network 
 
We further test the SN-SUE model and SA solution algorithm on a freeway sub-network in 
the San Francisco Bay Area. A sketch of the network is shown in Figure 34. The sub-network 
was produced via a sub-area analysis from a regional demand model for the entire Bay Area. 
The sub-area analysis resulted in a total of 3213 origin-destination (OD) pairs for the AM 
peak, of which about 20% have more than 100 trips. We therefore combine OD zones that 
are close to each other, resulting in a total of 81 OD pairs all of which have significant 
amount of trips. Figure 34 depicts how the original OD zones are grouped. The total number 
of trips for this sub-network after the adjustment is 261,194. 
 
A CMS is currently installed at the location indicated in Figure 34. Here we focus on trips 
going SB from East Bay (Zone 1) to the other zones (Zone 2- Zone 9). The purpose is to test 
the impact of CMS on traffic distribution within the network and how the optimal CMS 
configuration can be determined. It can be seen that there are two routes from Zone 1 to the 
Zone 5, denoted as R1 and R2 respectively. The travel time of R1 is roughly 40 minutes, 
longer than that for R2 (about 30 minutes). 
 
Similar to the analysis for Case Study I, we test on four scenarios. Scenario A assumes no 
travel time information is displayed on CMS, which provides a base case to test the SN-SUE 
model; Scenario B assumes the CMS displays travel time information for R1. Both the first 
two scenarios assume the same travel time variation parameters and perception parameters 
for every link. In the third scenario, we change the parameters for links along R1 to increase 
travel time variability. In the fourth scenario, we test how to determine the optimal CMS 
configuration, i.e. travel time information for which route should be displayed. 
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Figure 34: The San Francisco Freeway Sub-Network 
 
 
4.5.1 Scenario A: No Travel Time Information Displayed on CMS 
 
This scenario provides a baseline of the network traffic flow distribution according to the 
SN-SUE assumption. That is, we assume the perception error follows a normal distribution; 
the mean is sampled from a zero-mean normal distribution and the variance is 
sampled from a Gamma distribution , where , , are parameters. In 
particular, and  are the shape and scale parameters of the Gamma distribution 
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respectively. We also assume the (actual) link travel time variation follows Gamma 
distribution , where  are the shape and scale of the Gamma distribution 
respectively. Similar to Case Study I, we use the same set of parameters for all links: 

, , , and . 
 
Table 5 depicts the results of the SN-SUE assignment. It shows that about 45.5% of travelers 
going from East Bay (Zone 1) SB to all other potential locations (Zone 2 – Zone 9) will take 
R1. We can also see that there is almost no difference among different risk-taking behaviors 
(risk-averse, risk-neutral, or risk-prone) because the randomness for both perception errors 
and link travel time variations are the same for all links. 
 
Table 5: Distribution of Traffic with/without CMS Travel Time Information 

  Proportion of Traffic on R1 (%) Proportion of Traffic on R2 (%) 
Averse 45.46% 54.54% 
Neutral 45.47% 54.53% Scenario A 
Prone 45.49% 54.51% 
Averse 45.35% 54.65% 
Neutral 45.36% 54.64% Scenario B 
Prone 45.27% 54.73% 
Averse 39.54% 60.46% 
Neutral 45.73% 54.27% Scenario C 
Prone 50.93% 49.07% 

 
 
To see the convergence of the SN-SUE algorithm, we define a Gap function as follows: 
 

.         (4.5) 
 
Here  and  denote the link flow vector at the k-th and (k+1)-th iterations respectively. 
The gap function G is thus defined as the 2-norm of the difference of the link flow vectors for 
two consecutive iterations during the solution process. Figure 35 depicts the change of G vs. 
the number of iterations. We can see that the algorithm converges quickly after about 30 
iterations. 
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Figure 35: Convergence of the SN-SUE Algorithm 
 
 
4.5.2 Scenario B: Travel Time Displayed on CMS for R1 
 
In this scenario, we display travel times on the CMS for R1, but keep all the parameters 
unchanged for travel time variations and perception errors. The results in Table 5 show that 
the proportion of traffic via R1 goes down slightly, possibly because travelers have a better 
impression now that R1 is longer (especially for those going from Zone 1 to Zone 5) and 
therefore they switch to R2 instead even if they took R1 before. However, the difference is 
very minor, indicating that the perception errors do not play a major role in this particilar 
problem. We can also notice that the difference among different risk behaviors is negelible 
because all likes follow the same travel time distribution. 
 
4.5.3 Scenario C: Increase of Travel Time Variation on R1 
 
In Scenario C, we increase the parameters for link travel time variability of all links in R1 
to . Since the mean of a Gamma distribution is the product of its shape and 
scale, i.e.  and the standard deviation is , our setting implies that the 
distribution of travel time variation for R1 links has much larger mean and standard 
deviation. As a result, the sampled travel time variation should be generally larger for links 
on R1 compared with other links. Notice that the mean travel times of these links will remain 
the same as before. In other words, traveling on R1 now represents “more risks” to travelers. 
 
As risk-averse travelers prefer less risk or smaller travel time variations, we expect that fewer 
will select R1. This is reflected in Table 5 in the “Scenario C” column, where only less than 
40% travelers selected R1, about 5.5% reduction. The risk-prone travelers on the other hand 
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prefers more risks, they tend to favor R1 more as they view travel time variation as an 
opportunity to get smaller (experienced) travel times. As a result, nearly 51% travelers 
selected R1 representing a 6.5% increase compared with the base case (Scenario A). The 
risk-neutral travelers however are insensitive to this as they mainly care about the mean 
travel time which is not changed. Therefore, the change of the proportion for R1 is negligible 
if all travelers are risk-neutral. 
 
4.5.4 Scenario D: Optimal CMS Route to Display 
 
In this scenario, we run the SA algorithm to find the optimal solution. The search space for 
this particular problem is small as it has only two possibilities: displaying travel times for R1 
or R2. If we set the initial value as R2, Figure 36 shows the performance of the SA algorithm 
for 10 iterations. As indicated in the figure, the algorithm picks R1 at the third iteration and 
the remaining iterations will be just evaluating the objective values with travel time displayed 
for R1. The objective values fluncutate slightly due to the stochasticity involved in the travel 
times, which however stays fairly stable and significantly lower than the objective value if 
R2 is selected. Other parameters that are used to run the SA algorithm include: 1) travelers 
are assumed to be risk-averse, 2) costruction cost is zero (e.g. merely to enable the display of 
travel time messages on an exisiting CMS instead of installing a new CMS), and 3) the value 
of time is “$1 per minute.”  
 
 
 

 
 
 
Figure 36: Performance of SA Solution Algorithm 
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4.6 Discussions and Recommendations 
 
As shown via the two case studies in Section 4.4 and 4.5, the following factors determine 
how CMS travel times influence travelers’ route choice behaviors:  

• geometry of the roadway network,  
• traffic conditions especially travel time variability,  
• travelers’ risk-taking behaviors, and  
• travelers’ perceptions over the actual travel times.  

 
For a given network and traffic condition, drivers’ risk taking behavior will play an important 
role in the route choice process. 
 
The optimal CMS configurations are determined by  

• roadway geometry,  
• traffic conditions especially travel time variability,  
• travelers’ risk-taking behaviors,  
• travelers’ perceptions over the actual travel times, and  
• CMS installation/activation cost.  

 
In particular, CMS construction cost determines whether a CMS should be installed/activated 
and drivers’ risk-taking behaviors determine which optimal route should be selected to 
display travel times. 
 
Based on these findings, we can make the following recommendations: 

1. From the two case studies, displaying travel times is generally beneficial from a 
system perspective if the objective is to reduce the weighted summation of the 
expected total system travel time and the CMS installation/activation costs, unless the 
CMS installation/activation costs are too high (in this case the SA algorithm returns a 
solution which prefers no display). 

2. Exactly which CMS should be activated to display travel times (or whether new CMS 
needs to be installed for this purpose) and which destinations/routes to display on a 
CMS need to be determined from a system point of view based on the factors 
identified above.  

3. To fully explore the advantages of displaying travel times on CMS, thorough 
investigations on travel time variability of the study area and the perception of 
travelers are highly recommended. This will result in the needed parameters  and 

 to quantify the variability, and , , to quantify travelers’ perceptions. 
4. Displaying travel times may bring other intangible benefits which may not be easily 

quantified. Some of those factors are captured by the associated survey study of this 
project such as public’s acceptance, plan in advance, and reduction of stress, etc. 
When determining whether travel times should be displayed on a CMS, these factors 
need to be considered as well. 

5. We studied the optimal CMS configuration problem for displaying travel times on 
freeway CMS. The study is based on a SN-SUE model to capture how commuters 
make route choice decisions which considers both travel time variability and 
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travelers’ perceptions errors. To solve the optimal CMS configuration problem, we 
developed a heuristic method based on simulated annealing (SA). The model and 
solution method are tested on a hypothetical network and a real world network in the 
San Francisco Bay Area. 

 
We recommend the following future studies to continue the research in this line: 

• Expand the study area to a larger and more realistic network. 
• Expand the model and algorithm to capture traffic dynamics.  
• Investigate the sensitivity of the results to travel time variability and perception 

parameters, and to the “value of time” parameter. 
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CHAPTER 5 
GUIDELINES FOR DISPLAYING TRAVEL TIMES ON CMS 

AND CONCLUDING REMARKS 
 

In the literature, numerous studies have been conducted on CMS by both practitioners and 
the research community. These studies cover a broad range of issues related to CMS 
deployment, including CMS contents and design, operational and policy issues, impacts of 
CMS on drivers’ behaviors, and impacts of CMS on network-wide performances. Issues such 
as CMS contents and design have been well documented in existing guidelines (NCDOT, 
1999; FHWA, 2003; FHWA, 2004).   
 
In particular, Section 13.2.6 of Freeway Management and Operations Handbook (FHWA 
2003) addresses the use of CMS.It mentioned that “Section 2A.07 of the Manual on Uniform 
Traffic Control Devices defines CMS as "traffic control devices", and requires that a CMS 
shall conform to the principles established in the MUTCD related to the use of signs within 
the right-of-way of all classes of public highways, and to the extent practical, the design and 
applications prescribed in Sections 6F.02 and 6F.52.”, and “At the time of preparing this 
Handbook, a new part / chapter on changeable message signs is being developed for the 
MUTCD, and will be included in the next update.”. The FHWA Travel Time Data Collection 
Handbook (Benz 1998) provides guidance to transportation professionals and practitioners 
for the collection, reduction, and presentation of travel time data. The handbook is a useful 
reference for designing travel time data collection efforts and systems, performing travel time 
studies, and reducing and presenting travel time data. Initial chapters of the handbook 
describe how to design data collection activities, including the determination of parameters 
such as study size and scope, data collection technique, and other critical study elements.  
 
In this project, we focused on a few key issues: the evaluation of travel time estimation 
methods, user perception and preference, the impacts of CMS on drivers’ route choice 
behaviors, and the impact of CMS configurations (such as locations and destinations/routes 
to display) on the network-wide performances.   

Based on the findings from this research, the following guidelines are developed for 
deploying and displaying travel times on CMS: 

• Benefits besides route choice, such as being able to plan ahead and having peace of 
mind, are as important as route choice to users when they consider the usefulness of 
travel time display on CMS. When determining whether travel times should be 
displayed on a CMS, all these benefits needs to be considered. Even if there is no 
route choice, it is beneficial to have travel time display on CMS if there is great 
variability and uncertainty in traffic condition on a freeway segment. 
 

• Exactly which CMS should be activated to display travel times (or whether new CMS 
needs to be installed for this purpose) and which destinations/routes to display on a CMS 
need to be determined from a system point of view based on the factors identified below:  

 roadway geometry,  
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 traffic conditions especially travel time variability,  
 travelers’ risk-taking behaviors,  
 travelers’ perceptions over the actual travel times, and  
 CMS installation/activation cost.  

• To fully explore the advantages of displaying travel times on CMS, thorough 
investigations on travel time variability of the study area and the perception of 
travelers are highly recommended. 
 

• Travel time display, even perceived as accurate within 10-15 minutes, is considered 
useful by commuters.  Still, improving accuracy is important for enhancing the perceived 
usefulness of the travel time display. To this end,  

 Peak and off-peak should be treated differently; 

 When the route travel time is relatively short and the transition from free-flow to 
maximum congestion is slow, the differences using different estimation algorithms 
are not significant, and the instantaneous travel time can be adopted for its 
simplicity. 

 Using speed data from different lanes makes significant difference in the accuracy 
of the travel time estimates. For individual routes, one can always archive and 
study historical (average and lane-by-lane) travel times computed from loop 
detectors, and compare them to probe vehicle data. If patterns similar to those 
shown in this study are found, lane-by-lane loop data can be used to improve 
travel time estimation. 

 When relying on loop detectors alone, loop spacing should not be too large. Using 
multiple data source when loop coverage is poor. 

• To properly display travel time on CMS, 
 Estimated travel time should be displayed as an exact number of minutes, not as a 

range. 
 Adopt an update frequency of every 2 minutes. 

• Coordinate CMS with other Automated Travel Information Systems for maximum 
effectiveness.  

 
The successful adoption of the operational procedures developed in this study will enable the 
State of California to display travel times on CMS as a common practice statewide. For each 
individual traveler, the access to accurate travel time information helps him to make better 
decisions on travel route and departure time. This reduces individual travel time and 
uncertainty, and may further reduce driver anxiety and foster a safer travel environment with 
less air pollution and energy consumption. On a system level, the provision of useful real-
time information via CMS establishes a control mechanism that helps distribute travel 
demand throughout the roadway network. This, if done appropriately, may help drive the 
system toward a global optimum with minimum system-wide travel time and maximum 
travel time reliability. 
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